A Network Management System for Handling Scientific Data Flows

被引:0
作者
Zhenzhen Yan
Chris Tracy
Malathi Veeraraghavan
Tian Jin
Zhengyang Liu
机构
[1] University of Virginia,Department of Electrical and Computer Engineering
[2] Lawrence Berkeley National Laboratory,Energy Sciences Network (ESnet)
[3] University of Virginia,Department of Computer Science
来源
Journal of Network and Systems Management | 2016年 / 24卷
关键词
NetFlow traffic analysis; Elephant flows; Scientific computing; Research and education networks (RENs); MPLS; Virtual circuits;
D O I
暂无
中图分类号
学科分类号
摘要
Large scientific data transfers often occur at high rates causing increased burstiness in Internet traffic. To limit the adverse effects of these high-rate large-sized flows, which are referred to as α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} flows, on delay-sensitive audio/video flows, a network management system called Alpha Flow Traffic Engineering System (AFTES) is proposed for intra-domain traffic engineering. An offline approach is used in which AFTES analyzes NetFlow records collected by routers, extracts source–destination address prefixes of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} flows, and uses these prefixes to configure firewall filters at ingress routers of a provider’s network to redirect future α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} flows to traffic-engineered paths and isolated queues. The effectiveness of this scheme was evaluated through an analysis of 7 months of NetFlow data obtained from an ESnet router. For this data set, 91 % of bytes generated by α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} flows during high-rate intervals would have been directed had AFTES been deployed. The negative aspect of using address prefixes in firewall filters, i.e., the redirection of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} flows to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-flow paths/queues, was also quantified.
引用
收藏
页码:1 / 33
页数:32
相关论文
共 38 条
[1]  
Spragins J(1996)Asynchronous Transfer Mode: Solution for Broadband ISDN, Third Edition [New Books] IEEE Network 10 7-336
[2]  
Liakopoulos A(2004)Providing and verifying advanced IP services in hierarchical DiffServ networks-the case of GEANT International Journal of Communication Systems 17 321-62
[3]  
Maglaris B(2006)A measurement study of correlations of Internet flow characteristics Computer Networks 50 46-79
[4]  
Bouras C(1999)Estimating the heavy tail index from scaling properties Methodology and Computing in Applied Probability 1 55-117
[5]  
Sevasti A(2002)Understanding Internet traffic streams: dragonflies and tortoises IEEE Communications Magazine 40 110-76
[6]  
Lan Kun-chan(2008)A survey of techniques for Internet traffic classification using machine learning IEEE Communications Surveys and Tutorials 10 56-129
[7]  
Heidemann John(2002)Internet traffic engineering using multi-protocol label switching (MPLS) Computer Networks 40 111-56
[8]  
Crovella ME(2008)An overview of routing optimization for Internet traffic engineering Communications Surveys Tutorials, IEEE 10 36-52
[9]  
Taqqu MS(2009)A survey on Internet traffic identification IEEE Communications Surveys and Tutorials 11 37-946
[10]  
Brownlee N(2005)Estimating flow distributions from sampled flow statistics IEEE/ACM Transactions on Networking 13 933-80