Differential Activity and Expression Profile of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought

被引:0
|
作者
Sonia Sheoran
Vidisha Thakur
Sneh Narwal
Rajita Turan
H. M. Mamrutha
Virender Singh
Vinod Tiwari
Indu Sharma
机构
[1] ICAR—Indian Institute of Wheat & Barley Research,
来源
关键词
Antioxidant; Transcript profile; Water stress;
D O I
暂无
中图分类号
学科分类号
摘要
Wheat crop may experience water deficit at crucial stages during its life cycle, which induces oxidative stress in the plants. The antioxidant status of the plant plays an important role in providing tolerance against the water stress. The objective of this study was to investigate the impact of water stress on physiological traits, antioxidant activity and transcript profile of antioxidant enzyme related genes in four wheat genotypes (C306, AKAW3717, HD2687, PBW343) at three crucial stages of plants under medium (75 % of field capacity) and severe stress (45 % of field capacity) in pots. Drought was applied by withholding water for 10 days at a particular growth stage viz. tillering, anthesis and 15 days after anthesis (15DAA). For physiological traits, a highly significant effect of water stress at a particular stage and genotypic variations for resistance to drought tolerance was observed. Under severe water stress, the malondialdehyde (MDA) content increased while the relative water content (RWC) and chlorophyll index decreased significantly in all the genotypes. The drought susceptibility index (DSI) of the genotypes varied from 0.18 to 1.9. The drought treatment at the tillering and anthesis stages was found more sensitive in terms of reduction in thousand grain weight (TGW) and grain yield. Antioxidant enzyme activities [superoxide dismutase (SOD) and peroxidase (POX)] increased with the decrease in osmotic potential in drought tolerant genotypes C306 and AKAW3717. Moreover, the transcript profile of Mn-SOD upregulated significantly and was consistent with the trend of the variation in SOD activity, which suggests that Mn-SOD might play an important role in drought tolerance.
引用
收藏
页码:1282 / 1298
页数:16
相关论文
共 50 条
  • [21] AGRONOMIC, PHYSIOLOGICAL AND MOLECULAR CHARACTERIZATION OF SPRING WHEAT (TRITICUM AESTIVUM L.) ACCESSIONS FOR DROUGHT TOLERANCE
    Ahmad, Muhammad Qadir
    Naseer, Muhammad Farooq
    Qayyum, Abdul
    ul-Allah, Sami
    Malik, Waqas
    Khan, Sultan Habibullah
    Noor, Etrat
    Sajjad, Muhammad
    BANGLADESH JOURNAL OF BOTANY, 2020, 49 (01): : 29 - 38
  • [22] IN SITU ASSESSMENT OF MORPHO-PHYSIOLOGICAL RESPONSE OF WHEAT (TRITICUM AESTIVUM L.) GENOTYPES TO DROUGHT
    Raziuddin
    Swati, Zahoor A.
    Bakht, Jehan
    Farhatullah
    Ullah, Naqib
    Shafi, Mohammad
    Akmal, Mohammad
    Hassan, Ghulam
    PAKISTAN JOURNAL OF BOTANY, 2010, 42 (05) : 3183 - 3195
  • [23] Genotypic Differences in Morphological, Physiological and Agronomic Traits in Wheat (Triticum aestivum L.) in Response to Drought
    Wang, Qingqing
    Wu, Yi
    Ozavize, Suleiman Fatimoh
    Qiu, Cheng-Wei
    Holford, Paul
    Wu, Feibo
    PLANTS-BASEL, 2024, 13 (02):
  • [24] Screening of Wheat (Triticum aestivum L.) Genotypes for Drought Tolerance through Agronomic and Physiological Response
    Ahmad, Ali
    Aslam, Zubair
    Javed, Talha
    Hussain, Sadam
    Raza, Ali
    Shabbir, Rubab
    Mora-Poblete, Freddy
    Saeed, Tasbiha
    Zulfiqar, Faisal
    Ali, Muhammad Moaaz
    Nawaz, Muhammad
    Rafiq, Muhammad
    Osman, Hany S.
    Albaqami, Mohammed
    Ahmed, Mohamed A. A.
    Tauseef, Muhammad
    AGRONOMY-BASEL, 2022, 12 (02):
  • [25] Effect of Exogenous Chitosan on Physiological Properties,Antioxidant Activity,and Cadmium Uptake of Wheat(Triticum aestivum L.)Seedlings Under Cadmium Stress
    Zhang J.-J.
    Jiao Q.-J.
    Xu Z.-Y.
    Fan L.-N.
    Jiang Y.
    Song J.
    Hua D.-L.
    Li G.-Z.
    Lin D.
    Liu H.-T.
    Huanjing Kexue/Environmental Science, 2024, 45 (06): : 3649 - 3660
  • [26] Response of Winter Wheat (Triticum aestivum L.) to Selected Biostimulants under Drought Conditions
    Radzikowska-Kujawska, Dominika
    John, Paula
    Piechota, Tomasz
    Nowicki, Marcin
    Kowalczewski, Przemyslaw Lukasz
    AGRICULTURE-BASEL, 2023, 13 (01):
  • [27] Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.)
    Amoah, Joseph Noble
    Ko, Chan Seop
    Yoon, Jin Seok
    Weon, Seo Yong
    JOURNAL OF PLANT INTERACTIONS, 2019, 14 (01) : 492 - 505
  • [28] Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp under drought stress
    Arzanesh, M. H.
    Alikhani, H. A.
    Khavazi, K.
    Rahimian, H. A.
    Miransari, M.
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2011, 27 (02): : 197 - 205
  • [29] Multivariate analysis of mutant wheat (Triticum aestivum L.) lines under drought stress
    Zahra, Sadaf
    Shaheen, Tayyaba
    Hussain, Momina
    Zulfiqar, Sana
    Rahman, Mehboob-ur
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2021, 45 (05) : 617 - 633
  • [30] Foliar Spray of Silicon Confers Drought Tolerance in Wheat (Triticum aestivum L.) by Enhancing Morpho-Physiological and Antioxidant Potential
    Muhammad Aurangzaib
    Zahoor Ahmad
    Muhammad Imran Jalil
    Fahim Nawaz
    M. Rashid Shaheen
    Maqshoof Ahmad
    Azhar Hussain
    Muhammad Kashif Ejaz
    Muhammad Adnan Tabassum
    Silicon, 2022, 14 : 4793 - 4807