A dynamic unilateral contact problem with adhesion and friction in viscoelasticity

被引:0
作者
Marius Cocou
Mathieu Schryve
Michel Raous
机构
[1] Laboratoire de Mécanique et d’Acoustique C.N.R.S.,
[2] Aix-Marseille Université U.F.R. M.I.M.,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2010年 / 61卷
关键词
35K85; 35R35; 49J40; 74A55; 74D05; 74H20; Unilateral contact; Adhesion; Healing; Friction; Dynamic problems; Viscoelasticity;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin–Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.
引用
收藏
页码:721 / 743
页数:22
相关论文
共 50 条