On the Mass Transfer in the 3D Pitaevskii Model

被引:0
作者
Jang, Juhi [1 ]
Jayanti, Pranava Chaitanya [1 ]
Kukavica, Igor [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Superfluids; Pitaevskii model; Navier-Stokes equation; Nonlinear Schr & ouml; dinger equation; Global weak solutions; Existence; 3D; NAVIER-STOKES EQUATIONS; ENERGY WEAK SOLUTIONS; GLOBAL EXISTENCE; GROSS-PITAEVSKII; QUANTUM; SYSTEM; FLUID; SUPERFLUIDITY; DENSITY;
D O I
10.1007/s00021-024-00877-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine a micro-scale model of superfluidity derived by Pitaevskii (Sov. Phys. JETP 8:282-287, 1959) which describes the interacting dynamics between superfluid He-4 and its normal fluid phase. This system consists of the nonlinear Schr & ouml;dinger equation and the incompressible, inhomogeneous Navier-Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. The coupling permits mass/momentum/energy transfer between the phases, and accounts for the conversion of superfluid into normal fluid. We prove the existence of global weak solutions in T 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>3$$\end{document} for a power-type nonlinearity, beginning from small initial data. The main challenge is to control the inter-phase mass transfer in order to ensure the strict positivity of the normal fluid density, while obtaining time-independent a priori estimates.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids [J].
Choe, HJ ;
Kim, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1183-1201
[22]  
Danchin R., 2006, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V15, P637, DOI 10.5802/afst.1133
[23]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[24]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[25]   SOLUTIONS FOR 2-DIMENSIONAL SYSTEM FOR MATERIALS OF KORTEWEG TYPE [J].
HATTORI, H ;
LI, DN .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (01) :85-98
[26]   Global solutions of a high dimensional system for Korteweg materials [J].
Hattori, HHH ;
Li, DN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) :84-97
[27]  
Holm DD, 2001, LECT NOTES PHYS, V571, P114
[28]   Small-data global existence of solutions for the Pitaevskii model of superfluidity [J].
Jang, Juhi ;
Jayanti, Pranava Chaitanya ;
Kukavica, Igor .
NONLINEARITY, 2024, 37 (06)
[29]  
Jayanti P.C., 2022, Analysis of models of superfluidity
[30]   Uniqueness in a Navier-Stokes-nonlinear-Schrodinger model of superfluidity* [J].
Jayanti, Pranava Chaitanya ;
Trivisa, Konstantina .
NONLINEARITY, 2022, 35 (07) :3755-3776