On the Mass Transfer in the 3D Pitaevskii Model

被引:0
作者
Jang, Juhi [1 ]
Jayanti, Pranava Chaitanya [1 ]
Kukavica, Igor [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Superfluids; Pitaevskii model; Navier-Stokes equation; Nonlinear Schr & ouml; dinger equation; Global weak solutions; Existence; 3D; NAVIER-STOKES EQUATIONS; ENERGY WEAK SOLUTIONS; GLOBAL EXISTENCE; GROSS-PITAEVSKII; QUANTUM; SYSTEM; FLUID; SUPERFLUIDITY; DENSITY;
D O I
10.1007/s00021-024-00877-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine a micro-scale model of superfluidity derived by Pitaevskii (Sov. Phys. JETP 8:282-287, 1959) which describes the interacting dynamics between superfluid He-4 and its normal fluid phase. This system consists of the nonlinear Schr & ouml;dinger equation and the incompressible, inhomogeneous Navier-Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. The coupling permits mass/momentum/energy transfer between the phases, and accounts for the conversion of superfluid into normal fluid. We prove the existence of global weak solutions in T 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>3$$\end{document} for a power-type nonlinearity, beginning from small initial data. The main challenge is to control the inter-phase mass transfer in order to ensure the strict positivity of the normal fluid density, while obtaining time-independent a priori estimates.
引用
收藏
页数:17
相关论文
共 50 条
[1]  
Adams R., 2003, Sobolev Spaces
[2]   REAL INTERPOLATION OF SOBOLEV SPACES ON SUB-DOMAINS OF RN [J].
ADAMS, RA ;
FOURNIER, JJF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (01) :190-214
[3]   An Intrinsically Hydrodynamic Approach to Multidimensional QHD Systems [J].
Antonelli, Paolo ;
Marcati, Pierangelo ;
Zheng, Hao .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (02)
[4]   Global existence of weak solutions to the Navier-Stokes-Korteweg equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (01) :171-200
[5]   Genuine Hydrodynamic Analysis to the 1-D QHD System: Existence, Dispersion and Stability [J].
Antonelli, Paolo ;
Marcati, Pierangelo ;
Zheng, Hao .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (03) :2113-2161
[6]  
Antonelli P, 2015, BULL INST MATH ACAD, V10, P349
[7]   Global Existence of Finite Energy Weak Solutions of Quantum Navier-Stokes Equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (03) :1161-1199
[8]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[9]   ON THE CAUCHY PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS WITH ROTATION [J].
Antonelli, Paolo ;
Marahrens, Daniel ;
Sparber, Christof .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (03) :703-715
[10]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686