The Asymptotic Behavior of the Composition of Firmly Nonexpansive Mappings

被引:1
作者
David Ariza-Ruiz
Genaro López-Acedo
Adriana Nicolae
机构
[1] Universidad de Sevilla,Departamento de Análisis Matemático
[2] Babeş-Bolyai University,Department of Mathematics
[3] Simion Stoilow Institute of Mathematics of the Romanian Academy,undefined
[4] Research group of the project PD-3-0152,undefined
来源
Journal of Optimization Theory and Applications | 2015年 / 167卷
关键词
Firmly nonexpansive mapping; Convex optimization; Convex feasibility problem; -Uniformly convex geodesic space; CAT; space; 47H09; 49M27; 53C23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide, in the setting of geodesic spaces, a unified treatment of some convex minimization problems, which allows for a better understanding and, in some cases, improvement of results proved recently in this direction. For this purpose, we analyze the asymptotic behavior of compositions of finitely many firmly nonexpansive mappings focusing on asymptotic regularity and convergence results.
引用
收藏
页码:409 / 429
页数:20
相关论文
共 47 条
  • [1] Bauschke HH(1996)On projection algorithms for solving convex feasibility problems SIAM Rev. 38 367-426
  • [2] Borwein JM(2004)Solving monotone inclusions via compositions of nonexpansive averaged operators Optimization 53 475-504
  • [3] Combettes PL(1973)Nonexpansive projections on subsets of Banach spaces Pac. J. Math. 47 341-355
  • [4] Bruck RE(1967)Convergence theorems for sequences of nonlinear operators in Banach spaces Math. Z. 100 201-225
  • [5] Browder FE(1962)Monotone (nonlinear) operators in Hilbert space Duke Math. J. 29 341-346
  • [6] Minty GJ(2005)The asymptotic behavior of the composition of two resolvents Nonlinear Anal. 60 283-301
  • [7] Bauschke HH(1980)Convergence d’un schéma de minimisation alternée Ann. Fac. Sci. Toulouse 2 1-9
  • [8] Combettes PL(1992)On the convergence of the products of firmly nonexpansive mappings SIAM J. Optim. 2 425-434
  • [9] Reich S(1977)Nonexpansive projections and resolvents of accretive operators in Banach spaces Houst. J. Math. 3 459-470
  • [10] Acker F(1998)Gradient flows on nonpositively curved metric spaces and harmonic maps Commun. Anal. Geom. 6 199-253