A multiplicity result for double singularly perturbed elliptic systems

被引:0
作者
Marco Ghimenti
Anna Maria Micheletti
机构
[1] Università di Pisa,Dipartimento di Matematica
来源
Journal of Fixed Point Theory and Applications | 2015年 / 17卷
关键词
35J60; 35J47; 58E05; 81V10; Schrödinger–Maxwell systems; Schrödinger–Poisson–Slater equation; Riemannian manifold; singular perturbation;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the number of low-energy solutions of a double singularly perturbed Schrödinger–Maxwell-type system on a smooth three-dimensional manifold (M, g) depends on the topological properties of the manifold. The result is obtained via the Lusternik–Schnirelmann category theory.
引用
收藏
页码:123 / 136
页数:13
相关论文
共 7 条
[1]  
Ambrosetti A.(2008)Multiple bound states for the Schrödinger-Poisson problem Commun. Contemp. Math. 10 391-404
[2]  
Ruiz D.(2008)Ground state solutions for the nonlinear Schrödinger-Maxwell equations J. Math. Anal. Appl. 345 90-108
[3]  
Azzollini A.(2003)A multiplicity result for the nonlinear Schrödinger-Maxwell equations Commun. Appl. Anal. 7 417-423
[4]  
Pomponio A.(2011)Multiplicity and concentration of positive solutions for the Schrödinger- Poisson equations Z. Angew. Math. Phys. 62 869-889
[5]  
Coclite G. M.(2010)On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases Arch. Ration. Mech. Anal. 198 349-368
[6]  
He X.(undefined)undefined undefined undefined undefined-undefined
[7]  
Ruiz D.(undefined)undefined undefined undefined undefined-undefined