Inverse polynomial reconstruction method in DCT domain

被引:0
作者
Hamid Dadkhahi
Atanas Gotchev
Karen Egiazarian
机构
[1] University of South Australia,Institute for Telecommunications Research
[2] Tampere University of Technology,Department of Signal Processing
来源
EURASIP Journal on Advances in Signal Processing | / 2012卷
关键词
Sparse representation; Inverse polynomial reconstruction; Discrete cosine transform; Linear approximation; Denoising;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 52 条
[1]  
Wright J(2010)Sparse representation for computer vision and pattern recognition, the Proceedings of the IEEE vol. 98 1031-1044
[2]  
Ma Y(2006)Denoising by sparse approximation: error bounds based on rate-distortion theory, EURASIP J. Appl. Signal Process 2006 19-266
[3]  
Mairal J(2004)New tight frames of curvelets and optimal representations of objects with piecewise c singularities, Commun. Pure Appl. Math 57 219-684
[4]  
Sapiro G(2002)The curvelet transform for image denoising IEEE Trans. Image Process 11 670-897
[5]  
Huang T(1999)Wedgelets: nearly-minimax estimation of edges, Ann. Stat 27 859-668
[6]  
Yan S(1997)On the Gibbs phenomenon and its resolution, SIAM Rev 39 644-65
[7]  
Fletcher AK(2003)Towards the resolution of the Gibbs phenomena, J. Comput. Appl. Math 161 41-98
[8]  
Rangan S(1992)On the, Gibbs phenomenon, I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math 43 81-399
[9]  
Goyal VK(2005)Inverse polynomial reconstruction of two dimensional Fourier images, J. Sci. Comput 25 367-946
[10]  
Ramchandran K(2010)Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method, J. Comput. Phys 229 933-774