On the exceptional set for Diophantine inequality with unlike powers of primes

被引:0
作者
Huafeng Liu
Rui Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Lithuanian Mathematical Journal | 2024年 / 64卷
关键词
exceptional set; Diophantine inequality; primes; sieve methods; 11D75; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ2, λ3, λ4, λ5 be nonzero real numbers, not all negative. Let V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{V}$$\end{document} be a well-spaced sequence. Assume that λ2/λ3 is irrational and algebraic, and δ > 0. Let EV,N,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\left(\mathfrak{V},N,\delta \right)$$\end{document} be the number of υ∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upsilon \in \mathfrak{V}$$\end{document} with υ≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upsilon \le N$$\end{document} such that the Diophantine inequality λ2p22+λ3p33+λ4p44+λ5p55-υ<υ-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{\lambda }_{2}{p}_{2}^{2}+{\lambda }_{3}{p}_{3}^{3}+{\lambda }_{4}{p}_{4}^{4}+{\lambda }_{5}{p}_{5}^{5}-\upsilon \right|<{\upsilon }^{-\delta }$$\end{document} has no solution in primes p2, p3, p4, p5. In this paper, we prove that for any ε>0,EV,N,δ≪N1-19/378+2δ+ε,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0,E\left(\mathfrak{V},N,\delta \right)\ll {N}^{1-19/378+2\delta +\varepsilon },$$\end{document} which refines the previous result.
引用
收藏
页码:34 / 52
页数:18
相关论文
共 41 条
[1]  
Baker RC(1982)Diophantine approximation by prime numbers J. Lond. Math. Soc. 25 201-215
[2]  
Harman G(2001)An improvement on a theorem of the Goldbach-Waring type Rocky Mt. J. Math. 31 1151-1170
[3]  
Bauer C(2008)A Goldbach-Waring problem for unequal powers of primes Rocky Mt. J. Math. 38 1073-1090
[4]  
Bauer C(2016)Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three Ann. Math. 184 633-682
[5]  
Bourgain J(2001)The values of ternary quadratic forms at prime arguments Mathematika 48 137-149
[6]  
Demeter C(1946)On indefinite quadratic forms in five variables J. Lond. Math. Soc. 21 185-193
[7]  
Guth L(2021)Diophantine approximationwith one prime of the form Lith. Math. J. 61 445-459
[8]  
Cook RJ(2022) = Indian J. Pure Appl. Math. 53 875-883
[9]  
Fox A(2016)+ J. Inequal. Appl. 2016 33-555
[10]  
Davenport H(2019)+1 Open Math. 17 544-199