Semi-implicit Runge-Kutta schemes for the Navier-Stokes equations

被引:0
作者
E. Sterner
机构
[1] Uppsala University,Department of Scientific Computing
来源
BIT Numerical Mathematics | 1997年 / 37卷
关键词
65L06; 65M12; 76N20; Navier-Stokes equations; semi-implicit; Runge-Kutta;
D O I
暂无
中图分类号
学科分类号
摘要
The stationary Navier-Stokes equations are solved in 2D with semi-implicit Runge-Kutta schemes, where explicit time-integration in the streamwise direction is combined with implicit integration in the body-normal direction. For model problems stability restrictions and convergence properties are studied. Numerical experiments for the flow over a flat plate show that the number of iterations for the semi-implicit schemes is almost independent of the Reynolds number.
引用
收藏
页码:164 / 178
页数:14
相关论文
共 10 条
[1]  
Enander R.(1993)Improved implicit residual smoothing for steady state computations of first-order hyperbolic systems J. Comput. Phys. 107 291-296
[2]  
Gustafsson B.(1993)The GMRES method improved by securing fast wave propagation Applied Numerical Mathematics 12 135-152
[3]  
Lötstedt P.(1988)Computational transonics Communications on Pure and Applied Mathematics XLI 507-549
[4]  
Jameson A.(1990)Stability of a Runge-Kutta method for the navier-Stokes equation BIT 30 542-560
[5]  
Sowa J.(1995)Flux-limited schemes for the compressible Navier-Stokes equations AIAA Journal 33 252-261
[6]  
Tatsumi S.(1979)An extension of A-stability to alternating direction implicit methods BIT 19 395-417
[7]  
Jameson A.(undefined)undefined undefined undefined undefined-undefined
[8]  
Martinelli L.(undefined)undefined undefined undefined undefined-undefined
[9]  
Warming R.(undefined)undefined undefined undefined undefined-undefined
[10]  
Beam R.(undefined)undefined undefined undefined undefined-undefined