A method of constructing 2-resolvable t-designs for t=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3,4$$\end{document}

被引:0
|
作者
Tran van Trung
机构
[1] Universität Duisburg-Essen,Institut für Experimentelle Mathematik
关键词
-resolvable ; -design; Steiner 2-design; Projective plane; 05B05;
D O I
10.1007/s10623-022-01056-w
中图分类号
学科分类号
摘要
The paper introduces a method for constructing 2-resolvable t-designs for t=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3,4$$\end{document}. The main idea is based on the assumption that there exists a partition of a t-design into Steiner 2-designs. A remarkable property of the method is that it enables the construction of 2-resolvable t-designs with a large variety of block sizes. For t=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=4$$\end{document}, it is required that the Steiner 2-designs of the partition are projective planes and this case would also lead to a construction of 3-resolvable 5-designs. For instance, we show the existence of an infinite series of 3-resolvable 5-designs having N=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=5$$\end{document} resolution classes with parameters 5-(14+8m,7,10(9+8m)(1+m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(14+8m,7, 10(9+8m)(1+m))$$\end{document} for any m≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 0$$\end{document} as a byproduct. Moreover, it turns out that the method is very effective, as it yields infinitely many 2-resolvable 3-designs. However, the question of simplicity of the constructed designs has not been yet investigated.
引用
收藏
页码:1567 / 1583
页数:16
相关论文
共 23 条