Endpoint Boundedness of Linear Commutators on Local Hardy Spaces Over Metric Measure Spaces of Homogeneous Type

被引:0
|
作者
Xing Fu
Dachun Yang
Sibei Yang
机构
[1] Hubei University,Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
[2] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[3] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Metric measure space of homogeneous type; Commutator; Local Hardy space; Wavelet; Bilinear decomposition; Calderón–Zygmund operator; Primary 42B20; Secondary 42B30; 47B47; 42C40; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathcal {X}}},d,\mu )$$\end{document} be a metric measure space of homogeneous type in the sense of Coifman and Weiss. In this article, the authors prove that the commutator, generated by any b∈BMO(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathrm {BMO}({\mathcal {X}})$$\end{document} and any Calderón–Zygmund operator, is bounded from the Hardy type space Hb1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_b({\mathcal {X}})$$\end{document} to the local Hardy space Hρ1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_{\rho }({\mathcal {X}})$$\end{document} associated with an admissible function ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}, where Hb1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_b({\mathcal {X}})$$\end{document} is the largest subspace of the Hardy space H1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1({\mathcal {X}})$$\end{document} that ensures the boundedness of commutators from Hb1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_b({\mathcal {X}})$$\end{document} to L1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1({\mathcal {X}})$$\end{document}. Moreover, the authors investigate the relations between the Hardy space HL1(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_L({\mathbb {R}}^n)$$\end{document} associated with the Schrödinger operator L and the local Hardy space h1(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^1({\mathbb {R}}^n)$$\end{document}. The major novelties of this article are that the main result even essentially improves the corresponding Euclidean case and, throughout this article, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is not assumed to satisfy the reverse doubling condition.
引用
收藏
页码:4092 / 4164
页数:72
相关论文
共 50 条
  • [31] Commutators on Weighted Morrey Spaces on Spaces of Homogeneous Type
    Gong, Ruming
    Li, Ji
    Pozzi, Elodie
    Vempati, Manasa N.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 305 - 334
  • [32] Real-variable characterizations of local Hardy spaces on spaces of homogeneous type
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (05) : 900 - 955
  • [33] Some of Commutators on Spaces of Homogeneous Type
    邱道文
    NortheasternMathematicalJournal, 2000, (02) : 215 - 224
  • [34] THE BOUNDEDNESS OF MULTILINEAR COMMUTATORS ON WEIGHTED SPACES AND HERZ-TYPE SPACES
    周伟军
    马柏林
    徐景实
    ActaMathematicaScientia, 2007, (02) : 361 - 372
  • [35] The boundedness of multilinear commutators on weighted spaces and Herz-type spaces
    Zhou Weijun
    Ma Bolin
    Xu Jingshi
    ACTA MATHEMATICA SCIENTIA, 2007, 27 (02) : 361 - 372
  • [36] Commutators of pseudo-differential operators on local Hardy spaces
    Komori-Furuya, Y.
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 489 - 501
  • [37] Boundedness of Commutators with Lipschitz Functions in Non-homogeneous Spaces*
    Xiaoli Fu
    Yan Meng
    Dachun Yang
    Chinese Annals of Mathematics, Series B, 2007, 28 : 67 - 80
  • [38] Commutators of pseudo-differential operators on local Hardy spaces
    Yasuo Komori-Furuya
    Acta Scientiarum Mathematicarum, 2011, 77 (3-4): : 489 - 501
  • [39] Boundedness of commutators with Lipschitz functions in non-homogeneous spaces
    Meng, Yan
    Yang, Dachun
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (06): : 1443 - 1464
  • [40] Boundedness of Singular Integral Operators on Local Hardy Spaces and Dual Spaces
    Ding, Wei
    Han, YongSheng
    Zhu, YuePing
    POTENTIAL ANALYSIS, 2021, 55 (03) : 419 - 441