A note on polynomial automorphisms of finite lattices

被引:0
作者
H. Lakser
机构
[1] Department of Mathematics and Astronomy,
[2] University of Manitoba,undefined
[3] Winnipeg,undefined
[4] R3T 2N2,undefined
[5] Canada ,undefined
来源
algebra universalis | 1997年 / 37卷
关键词
Finite Lattice; Polynomial Automorphism;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:144 / 145
页数:1
相关论文
共 48 条
[31]   A study of the quasi covering dimension of finite lattices [J].
D. Boyadzhiev ;
D. Georgiou ;
A. Megaritis ;
F. Sereti .
Computational and Applied Mathematics, 2019, 38
[32]   Definability in substructure orderings, IV: Finite lattices [J].
J. Ježek ;
R. McKenzie .
Algebra universalis, 2009, 61
[33]   Small representations of finite distributive lattices as congruence lattices (vol 123, pg 1959, 1995) [J].
Gratzer, G ;
Rival, I ;
Zaguia, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (08) :2509-2510
[34]   FIXED POINTS AND NEGATIVE CIRCUIT FREE IN FINITE LATTICES [J].
Ho, Juei-Ling ;
Wu, Shu-Han .
TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02) :593-601
[35]   Definability in substructure orderings, III: Finite distributive lattices [J].
Jaroslav Ježek ;
Ralph McKenzie .
Algebra universalis, 2009, 61
[36]   Definability in substructure orderings, III: Finite distributive lattices [J].
Jezek, Jaroslav ;
McKenzie, Ralph .
ALGEBRA UNIVERSALIS, 2009, 61 (3-4) :283-300
[37]   A Study of the Small Inductive Dimension in the Area of Finite Lattices [J].
Georgiou, D. ;
Megaritis, A. ;
Prinos, G. ;
Sereti, F. .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2024, 41 (02) :437-461
[38]   Transfer-stable aggregation functions on finite lattices [J].
Kurac, Zbynek ;
Riemel, Tomas ;
Ryparova, Lenka .
INFORMATION SCIENCES, 2020, 521 :88-106
[39]   The small inductive dimension of finite lattices through matrices [J].
Beshimov, R. B. ;
Georgiou, D. ;
Sereti, F. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04)
[40]   The small inductive dimension of finite lattices through matrices [J].
R. B. Beshimov ;
D. Georgiou ;
F. Sereti .
Computational and Applied Mathematics, 2023, 42