A note on polynomial automorphisms of finite lattices

被引:0
作者
H. Lakser
机构
[1] Department of Mathematics and Astronomy,
[2] University of Manitoba,undefined
[3] Winnipeg,undefined
[4] R3T 2N2,undefined
[5] Canada ,undefined
来源
algebra universalis | 1997年 / 37卷
关键词
Finite Lattice; Polynomial Automorphism;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:144 / 145
页数:1
相关论文
共 48 条
  • [21] A technical lemma for congruences of finite lattices
    G. Grätzer
    Algebra universalis, 2014, 72 : 53 - 55
  • [22] A study of a covering dimension of finite lattices
    Boyadzhiev, D.
    Georgiou, D. N.
    Megaritis, A. C.
    Sereti, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 333 : 276 - 285
  • [23] On the Largest Numbers of Congruences of Finite Lattices
    Muresan, Claudia
    Kulin, Julia
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2020, 37 (03): : 445 - 460
  • [24] A technical lemma for congruences of finite lattices
    Graetzer, G.
    ALGEBRA UNIVERSALIS, 2014, 72 (01) : 53 - 55
  • [25] On the Largest Numbers of Congruences of Finite Lattices
    Claudia Mureşan
    Júlia Kulin
    Order, 2020, 37 : 445 - 460
  • [26] Collection of finite lattices generated by a poset
    Seselja, B
    Tepavcevic, A
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2000, 17 (02): : 129 - 139
  • [27] Collection of Finite Lattices Generated by a Poset
    Branimir Šešelja
    Andreja Tepavčević
    Order, 2000, 17 : 129 - 139
  • [28] Definability in substructure orderings, IV: Finite lattices
    Jezek, J.
    McKenzie, R.
    ALGEBRA UNIVERSALIS, 2009, 61 (3-4) : 301 - 312
  • [29] On generating of idempotent aggregation functions on finite lattices
    Botur, Michal
    Halas, Radomir
    Mesiar, Radko
    Pocs, Jozef
    INFORMATION SCIENCES, 2018, 430 : 39 - 45
  • [30] A study of the quasi covering dimension of finite lattices
    Boyadzhiev, D.
    Georgiou, D.
    Megaritis, A.
    Sereti, F.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03)