Semi-online scheduling for jobs with release times

被引:0
作者
Rongheng Li
Liying Yang
Xiaoqiong He
Qiang Chen
Xiayan Cheng
机构
[1] Hunan Normal University,College of Mathematics and Computer Science
来源
Journal of Combinatorial Optimization | 2013年 / 26卷
关键词
On-line scheduling; List scheduling; Optimal algorithm; Worst-case performance; Release time;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider three semi-online scheduling problems for jobs with release times on m identical parallel machines. The worst case performance ratios of the LS algorithm are analyzed. The objective function is to minimize the maximum completion time of all machines, i.e. the makespan. If the job list has a non-decreasing release times, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2-\frac{1}{m}$\end{document} is the tight bound of the worst case performance ratio of the LS algorithm. If the job list has non-increasing processing times, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2-\frac{1}{2m}$\end{document} is an upper bound of the worst case performance ratio of the LS algorithm. Furthermore if the job list has non-decreasing release times and the job list has non-increasing processing times we prove that the LS algorithm has worst case performance ratio not greater than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{2} -\frac{1}{2m}$\end{document}.
引用
收藏
页码:448 / 464
页数:16
相关论文
共 21 条
[1]  
Dósa G(2004)Semi-online algorithms for parallel machine scheduling problems Computing 72 355-363
[2]  
He Y(1969)Bounds on multiprocessing timing anomalies SIAM J Appl Math 17 416-429
[3]  
Graham RL(1999)Semi on-line scheduling on two identical machines Computing 62 179-187
[4]  
He Y(1997)Semi on-line algorithms for the partition problem Oper Res Lett 21 235-242
[5]  
Zhang G(2004)On-line scheduling for jobs with arbitrary release times Computing 73 79-97
[6]  
Kellerer H(2007)List scheduling for jobs with arbitrary release times and similar lengths J Sched 10 365-373
[7]  
Kotov V(1996)Ordinal algorithm for parallel machine scheduling Oper Res Lett 18 223-232
[8]  
Speranza MG(2000)Semi-online scheduling with decreasing job sizes Oper Res Lett 27 215-227
[9]  
Tuza Z(2002)Semi-online problem on two identical machines with combined partial information Oper Res Lett 30 408-414
[10]  
Li R(undefined)undefined undefined undefined undefined-undefined