On the Galerkin finite element approximations to multi-dimensional differential and integro-differential parabolic equations

被引:0
作者
N. Yu. Bakaev
机构
[1] Air-Force Engineering Academy,Department of Mathematics
来源
BIT Numerical Mathematics | 1997年 / 37卷
关键词
65M60; 65M12; Differential equations; integro-differential equations; maximum norm; finite element method; error estimates;
D O I
暂无
中图分类号
学科分类号
摘要
The maximum norm error estimates of the Galerkin finite element approximations to the solutions of differential and integro-differential multi-dimensional parabolic problems are considered. Our method is based on the use of the discrete version of the elliptic-Sobolev inequality and some operator representations of the finite element solutions. The results of the present paper lead to the error estimates of optimal or almost optimal order for the case of simplicial Lagrangian piecewise polynomial elements.
引用
收藏
页码:237 / 255
页数:18
相关论文
共 30 条
[1]  
Bramble J. H.(1977)Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations SIAM J. Numer. Anal. 14 218-241
[2]  
Schatz A. H.(1994)Resolvent estimates for elliptic finite element operators in one dimension Math. Comp. 63 121-140
[3]  
Thomée V.(1975)The stability in L Numer. Math. 23 193-197
[4]  
Wahlbin L. B.(1987) of the L Math. Comp. 49 331-357
[5]  
Crouzeix M.(1991)-projection into finite element spaces SIAM J. Numer. Anal. 28 1047-1070
[6]  
Larsson S.(1981)Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data Numer. Funct. Anal. Optim. 4 325-353
[7]  
Thomée V.(1996)Ritz-Volterna projections to finite-element spaces and applications to integrodifferential and related equations SIAM J. Numer. Anal. 33 1654-1668
[8]  
Douglas J.(1980)L Comm. Pure Appl. Math. 33 265-304
[9]  
Dupont T.(1986)-boundedness of the finite element Galerkin operator for parabolic problems Numer. Math. 49 529-544
[10]  
Wahlbin L. B.(1983)Maximum norm analysis of completely discrete finite element methods for parabolic problems Numer. Math. 41 345-371