Flatness for a strongly degenerate 1-D parabolic equation

被引:0
作者
Iván Moyano
机构
[1] Université Paris-Saclay,Centre de mathématiques Laurent Schwartz, Ecole polytechnique, CNRS
来源
Mathematics of Control, Signals, and Systems | 2016年 / 28卷
关键词
Partial differential equations; Degenerate parabolic equation; Boundary control; Null-controllability; Motion planning; Flatness;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the degenerate equation ∂tf(t,x)-∂xxα∂xf(t,x)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t f(t,x) - \partial _x \left( x^{\alpha } \partial _x f \right) (t,x) =0, \end{aligned}$$\end{document}on the unit interval x∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in (0,1)$$\end{document}, in the strongly degenerate case α∈[1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [1,2)$$\end{document} with adapted boundary conditions at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0$$\end{document} and boundary control at x=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=1$$\end{document}. We use the flatness approach to construct explicit controls in some Gevrey classes steering the solution from any initial datum f0∈L2(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0 \in L^2(0,1)$$\end{document} to zero in any time T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document}.
引用
收藏
相关论文
共 41 条
[1]  
Alabau-Boussourira F(2006)Carleman estimates for degenerate parabolic operators with applications to null controllability J Evol Equ 6 161-204
[2]  
Cannarsa P(1998)Degenerate self-adjoint evolution equations on the unit interval Semigroup Forum 57 1-36
[3]  
Fragnelli G(2013)Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. Discr. and Cont Din Syst Ser S 6:3 687-701
[4]  
Campiti M(2004)Persistent regional null controllability for a class of degenerate parabolic equations Commun Pure Appl Anal 3:4 607-635
[5]  
Metafune G(2005)Null controllability of degenerate heat equations Adv Differ Equ 10 153-190
[6]  
Pallara D(2008)Carleman estimates for a class of degenerated parabolic operators SIAM J Control Optim 47 1-19
[7]  
Cannarsa P(2009)Carleman estimates and null controllability for boundary-degenerate parabolic operators C R Acad Sci Sér I Math 347 147-152
[8]  
Fragnelli G(2012)Unique continuation and approximate controllability for a degenerate parabolic equation Appl Anal 91 1409-1425
[9]  
Rocchetti D(2014)Controllability of the heat equation with an inverse-square potential localized on the boundary SIAM J Control Opt 52 2055-2089
[10]  
Cannarsa P(2008)Control and stabilization properties for a singular heat equation with an inverse square potential Commun Partial Differ Equ 33 1996-2019