Toric origami structures on quasitoric manifolds

被引:0
作者
Anton A. Ayzenberg
Mikiya Masuda
Seonjeong Park
Haozhi Zeng
机构
[1] Osaka City University,Department of Mathematics
[2] National Institute for Mathematical Sciences,Division of Mathematical Models
来源
Proceedings of the Steklov Institute of Mathematics | 2015年 / 288卷
关键词
STEKLOV Institute; Simplicial Complex; Orbit Space; Characteristic Pair; Quasitoric Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We construct quasitoric manifolds of dimension 6 and higher which are not equivariantly homeomorphic to any toric origami manifold. All necessary topological definitions and combinatorial constructions are given, and the statement is reformulated in discrete geometrical terms. The problem reduces to the existence of planar triangulations with certain coloring and metric properties.
引用
收藏
页码:10 / 28
页数:18
相关论文
共 24 条
  • [1] Buchstaber V. M.(2004)Combinatorics of simplicial cell complexes and torus actions Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 247 41-58
  • [2] Panov T. E.(2007)Spaces of polytopes and cobordism of quasitoric manifolds Moscow Math. J. 7 219-242
  • [3] Buchstaber V. M.(2011)Symplectic origami Int. Math. Res. Not. 2011 4252-4293
  • [4] Panov T. E.(1991)Convex polytopes, Coxeter orbifolds and torus actions Duke Math. J. 62 417-451
  • [5] Ray N.(2005)On hyperbolicity of toric real threefolds Int. Math. Res. Not. 2005 3191-3201
  • [6] da Silva A. C.(1988)Hamiltoniens périodiques et images convexes de l’application moment Bull. Soc. Math. France 116 315-339
  • [7] Guillemin V.(1982)On the problem of partitioning planar graphs SIAM. J. Algebraic Discrete Methods 3 229-240
  • [8] Pires A. R.(2013)The topology of toric origami manifolds Math. Res. Lett. 20 885-906
  • [9] Davis M. W.(2013)Uniqueness and universality of the Brownian map Ann. Probab. 41 2880-2960
  • [10] Januszkiewicz T.(2008)Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere Geom. Funct. Anal. 18 893-918