Application of the Almansi formula for constructing polynomial solutions to the Dirichlet problem for a second-order equation

被引:1
作者
Karachik V.V. [1 ]
机构
[1] Southern Ural State University, Chelyabinsk, 454080
关键词
Almansi decomposition; Dirichlet problem; Polynomial solutions;
D O I
10.3103/S1066369X12060035
中图分类号
学科分类号
摘要
We obtain the Almansi decomposition for the second-order partial differential operators with constant coefficients. This decomposition is used for constructing a polynomial solution to the Dirichlet problem. © Allerton Press, Inc., 2012.
引用
收藏
页码:20 / 29
页数:9
相关论文
共 9 条
  • [1] Almansi E., Sull'Integrazione dell'Equazione Differenziale Δ <sup>2n</sup>u = 0, Ann. Mat. Pura Appl., 2, 3, pp. 1-51, (1899)
  • [2] Karachik V.V., On one representation of analytic functions by harmonic functions, Matem. Trudy, 10, 2, pp. 142-162, (2007)
  • [3] Nicolescu M., Probléme de l'Analyticité par Rapport á un Opérateur Linéaire, Stud. Math., 16, pp. 353-363, (1958)
  • [4] Karachik V.V., On an expansion of almansi type, Matem. Zametki, 83, 3, pp. 370-380, (2008)
  • [5] Karachik V.V., Normalized system of functions with respect to the laplace operator and its applications, J. of Math. Anal. Appl., 287, 2, pp. 577-592, (2003)
  • [6] Liu L., Ren G.B., Normalized system for wave and dunkl operators, Taiwanese J. Math., 14, 2, pp. 675-683, (2010)
  • [7] Karachik V.V., Polynomial solutions to systems of partial differential equations with constant coefficients, Yokohama Math J., 47, 2, pp. 121-142, (2000)
  • [8] Nikol'skii S.M., The cases when the solution to the boundary problem is polynomial, Dokl. Phys., 366, 6, pp. 746-748, (1999)
  • [9] Karachik V.V., Construction of polynomial solutions to some boundary-value problems for poisson's equation, Zhurn. Vychisl. Matem. i Matem. Fiz., 51, 9, pp. 1674-1694, (2011)