Heinz Type Inequalities for Poisson Integrals

被引:0
作者
Dariusz Partyka
Ken-ichi Sakan
机构
[1] The John Paul II Catholic University of Lublin,Institute of Mathematics and Computer Science
[2] The State School of Higher Education in Chełm,Institute of Mathematics and Information Technology
[3] Osaka City University,Department of Mathematics, Graduate School of Science
来源
Computational Methods and Function Theory | 2014年 / 14卷
关键词
Harmonic mappings; Poisson integral; Jacobian; Quasiconformal mappings; Quasiregular mappings; Primary 30C55; 30C62;
D O I
暂无
中图分类号
学科分类号
摘要
In 1958, E. Heinz obtained a lower bound for |∂xF|2+|∂yF|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\partial _x F|^2+|\partial _y F|^2$$\end{document}, where F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is a one-to-one harmonic mapping of the unit disk onto itself keeping the origin fixed. We show various variants of Heinz’s inequality in the case where F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is the Poisson integral of a function of bounded variation in the unit circle. In particular, we obtain such inequalities for F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} when it is a locally injective quasiregular mapping or an injective mapping of the unit disk onto a bounded convex domain in the complex plane.
引用
收藏
页码:219 / 236
页数:17
相关论文
共 13 条
[1]  
Bshouty D(1994)Univalent harmonic mappings in the plane Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 12-42
[2]  
Hengartner W(1987)Integrability of the derivative of the Riemann mapping function for wedge domains J. D’Analyse Math. 49 271-292
[3]  
FitzGerald CH(1959)On one-to-one harmonic mappings Pac. J. Math. 9 101-105
[4]  
Lesley FD(2003)On harmonic diffeomorphisms of the unit disc onto a convex domain Complex Var. 48 175-187
[5]  
Heinz E(1936)On the non-vanishing of the Jacobian in certain one-to-one mappings Bull. Am. Math. Soc. 42 689-692
[6]  
Kalaj D(2002)On Heinz’s inequality Bull. Soc. Sci. Lettres Łódź 52 27-34
[7]  
Lewy H(2005)On an asymptotically sharp variant of Heinz’s inequality Ann. Acad. Sci. Fenn. Ser. A. I. Math. 30 167-182
[8]  
Partyka D.(2009)On a variant of Heinz’s inequality for harmonic mappings of the unit disk onto bounded convex domains Bull. Soc. Sci. Lett. Łódź 59 25-36
[9]  
Sakan K.(undefined)undefined undefined undefined undefined-undefined
[10]  
Partyka D(undefined)undefined undefined undefined undefined-undefined