A quasilinear elliptic problem involving critical Sobolev exponents

被引:0
作者
Francesca Faraci
Csaba Farkas
机构
[1] University of Catania,Department of Mathematics and Informatics
[2] Sapientia University,Department of Mathematics and Informatics
来源
Collectanea Mathematica | 2015年 / 66卷
关键词
Quasilinear elliptic equation; Critical Sobolev exponent; Local minimum; 35J20; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we deal with a quasilinear elliptic equation involving a critical nonlinearity and a lower order perturbation. Under very general assumptions on the perturbation we prove the existence of a solution. The approach is based on the direct methods of calculus of variations.
引用
收藏
页码:243 / 259
页数:16
相关论文
共 30 条
[1]  
Anello G(2004)An existence and localization theorem for the solutions of a Dirichlet problem Ann. Pol. Math. 83 107-112
[2]  
Cordaro G(1998)Some results on Differ. Integr. Equ. 11 311-326
[3]  
Arioli G(1983)Laplace equations with a critical growth term Commun. Pure Appl. Math. 36 437-477
[4]  
Gazzola F(1995)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent Differ. Integr. Equ. 8 705-716
[5]  
Brezis H(1983)On Multiple solutions for the nonhomogeneous Nonlinear Anal. 7 827-850
[6]  
Nirenberg L(2004)-Laplacian with a critical Sobolev exponent J. Integr. Equ. Appl. 15 385-402
[7]  
Chabrowski J(1987) local regularity of weak solutions of degenerate elliptic equations Commun. Partial Differ. Equ. 12 1389-1430
[8]  
DiBenedetto E(1991)Solutions of Hammerstein equations via a variational principle Trans. Am. Math. Soc. 323 887-895
[9]  
Faraci F(1998)Existence and non-uniqueness for the p-Laplacian Nonlinear Anal. 33 617-636
[10]  
Moroz V(2012)Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term Nonlinear Anal. 75 2660-2671