Cross-dimensional feature attention aggregation network for cloud and snow recognition of high satellite images

被引:0
作者
Kai Hu
Enwei Zhang
Min Xia
Huiqin Wang
Xiaoling Ye
Haifeng Lin
机构
[1] Nanjing University of Information Science and Technology,Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET)
[2] Nanjing Forestry University,College of Information Science and Technology
来源
Neural Computing and Applications | 2024年 / 36卷
关键词
Cloud and snow identification; Remote sensing image; Cross-dimensional feature attention; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Cloud and snow in remote sensing images typically block the underlying surface information and interfere with the extraction of available information, so detecting cloud and snow becomes a critical problem in remotely sensed image processing. The current methods for detecting clouds and snow are susceptible to interference from complex background, making it difficult to recover cloud edge details and causing missing and false detection phenomena. To address these issues, a cross-dimensional feature attention aggregation network is suggested to realize the segmentation of clouds and snow. To address the problem of interference induced by the similar spectral characteristics of clouds and snow, the context attention aggregation module is added to conflate feature maps of various dimensions and screen the information. Multi-scale strip convolution module (MSSCM) and its improved version MSSCMs are used to extract edge characteristics at different scales and improve the harsh segmentation border. Also, adding deep feature semantic information extraction module to deep features to guide the classification of the model to avoid the interference of complex background. Finally, a ’los beatles’ module is used to replace the traditional linear combination in the decoding stage, and the feature information of different granularity is fused and extracted to enhance the model’s detection efficiency. In this paper, experiments are carried out on the public datasets: CSWV, HRC_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}WHU and L8_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}SPARCS. The MIOU scores on the three datasets are 89.507%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 91.674%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 80.722%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, respectively. Comparative experiment findings demonstrate that the network presented in this article can attain the highest detection accuracy and good detection efficiency with low parameters.
引用
收藏
页码:7779 / 7798
页数:19
相关论文
共 18 条
  • [1] Cross-dimensional feature attention aggregation network for cloud and snow recognition of high satellite images
    Hu, Kai
    Zhang, Enwei
    Xia, Min
    Wang, Huiqin
    Ye, Xiaoling
    Lin, Haifeng
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (14) : 7779 - 7798
  • [2] Multiscale Attention Feature Aggregation Network for Cloud and Cloud Shadow Segmentation
    Chen, Kai
    Xia, Min
    Lin, Haifeng
    Qian, Ming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] MCANet: A Multi-Branch Network for Cloud/Snow Segmentation in High-Resolution Remote Sensing Images
    Hu, Kai
    Zhang, Enwei
    Xia, Min
    Weng, Liguo
    Lin, Haifeng
    REMOTE SENSING, 2023, 15 (04)
  • [4] A deep feature fusion network with global context and cross-dimensional dependencies for classification of mild cognitive impairment from brain MRI
    Illakiya, T.
    Karthik, R.
    IMAGE AND VISION COMPUTING, 2024, 144
  • [5] Multi-scale Vertical Cross-layer Feature Aggregation and Attention Fusion Network for Object Detection
    Gao, Wenting
    Li, Xiaojuan
    Han, Yu
    Liu, Yue
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 139 - 150
  • [6] Enhanced Multi-Dimensional and Multi-Grained Cascade Forest for Cloud/Snow Recognition Using Multispectral Satellite Remote Sensing Imagery
    Xia, Meng
    Wang, Zhijie
    Han, Fang
    Kang, Yanting
    IEEE ACCESS, 2021, 9 : 131072 - 131086
  • [7] Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition
    Guo, Wenhui
    Li, Yaxuan
    Liu, Mengxue
    Ma, Rui
    Wang, Yanjiang
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [8] A high-level feature channel attention UNet network for cholangiocarcinoma segmentation from microscopy hyperspectral images
    Hongmin Gao
    Mengran Yang
    Xueying Cao
    Qin Liu
    Peipei Xu
    Machine Vision and Applications, 2023, 34
  • [9] A high-level feature channel attention UNet network for cholangiocarcinoma segmentation from microscopy hyperspectral images
    Gao, Hongmin
    Yang, Mengran
    Cao, Xueying
    Liu, Qin
    Xu, Peipei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (05)
  • [10] MEHGNet: a multi-feature extraction and high-resolution generative network for satellite cloud image sequence prediction
    Xie, Ben
    Dong, Jing
    Liu, Chang
    Cheng, Wei
    EARTH SCIENCE INFORMATICS, 2024, 17 (05) : 4931 - 4948