Precanonical Quantum Gravity: Quantization Without the Space–Time Decomposition

被引:0
作者
Igor V. Kanatchikov
机构
[1] Friedrich-Schiller-Universität Jena,Theoretisch
[2] Polish Academy of Sciences,Physikalisches Institut
来源
International Journal of Theoretical Physics | 2001年 / 40卷
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Time Variable; Dimensional Space;
D O I
暂无
中图分类号
学科分类号
摘要
A nonpertubative approach to quantum gravity using precanonical field quantization originating from the covariant De Donder–Weyl Hamiltonian formulation, which treats space and time variables on an equal footing, is presented. A generally covariant “multitemporal” generalized Schrödinger equation on the finite dimensional space of metric and space–time variables is obtained. An important ingredient of the formulation is the “bootstrap condition” which introduces a classical space–time geometry as an approximate concept emerging as the quantum average self-consistent with the underlying quantum dynamics. This ensures the independence of the theory from an arbitrarily fixed background. The prospects and unsolved problems of precanonical quantization of gravity are outlined.
引用
收藏
页码:1121 / 1149
页数:28
相关论文
共 85 条
  • [1] Aldaya V.(1978)Variational principles on Journal of Mathematical Physics 19 1869-1875
  • [2] de Azcarraga J. A.(1984)-th order jets of fibre bundles in field theory Physical Review D 29 599-606
  • [3] Betounes D. E.(1987)Extension of the classical Cartan form Journal of Mathematical Physics 28 2347-2353
  • [4] Betounes D. E.(1934)Differential geometric aspects of the Cartan form: Symmetry theory Proceedings of the Royal Society of London, Series A 143 410-437
  • [5] Born M.(1999)On the quantum theory of the electromagnetic field Journal of Australian Mathematical Society A 66 303-330
  • [6] Cantrijn F.(1996)On the geometry of multisymplectic manifolds Rendiconti del Seminario Mathematico dell' Universita Politechnico di Torino 54 225-236
  • [7] Ibort L. A.(1991)Hamiltonian structures on multisymplectic manifolds Differential Geometry and its Applications 1 345-374
  • [8] de Leon M.(1995)On the multisymplectic formalism for first order field theories Anales de Fisica, Monografías 2 73-89
  • [9] Cantrijn F.(2000)Ehresmann connections in classical field theories Publ. Real Soc. Mat. Española 1 119-131
  • [10] Ibort L. A.(1994)Lagrangian formalism for field theories in Physical Review D 50 3874-3888