Around the Mukai conjecture for Fano manifolds

被引:4
作者
Fujita K. [1 ]
机构
[1] Department of Mathematics, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto
基金
日本学术振兴会;
关键词
Extremal ray; Fano manifold; Mukai conjecture;
D O I
10.1007/s40879-015-0045-5
中图分类号
学科分类号
摘要
As a generalization of the Mukai conjecture, we conjecture that the Fano manifolds (Formula presented.) which satisfy the property (Formula presented.) have very special structure, where (Formula presented.) is the Picard number of (Formula presented.) and (Formula presented.) is the index of (Formula presented.). In this paper, we classify those (Formula presented.) with (Formula presented.) or (Formula presented.). © 2015, The Author(s).
引用
收藏
页码:120 / 139
页数:19
相关论文
共 32 条
[1]  
Andreatta M., Chierici E., Occhetta G., Generalized Mukai conjecture for special Fano varieties, Cent. Eur. J. Math., 2, 2, pp. 272-293, (2004)
[2]  
Andreatta M., Wisniewski J.A., A note on nonvanishing and applications, Duke. Math. J., 72, 3, pp. 739-755, (1993)
[3]  
Andreatta M., Wisniewski J.A., On manifolds whose tangent bundle contains an ample subbundle, Invent. Math., 146, 1, pp. 209-217, (2001)
[4]  
Bonavero L., Casagrande C., Debarre O., Druel S., Sur une conjecture de Mukai, Comment. Math. Helv., 78, 3, pp. 601-626, (2003)
[5]  
Casagrande C., On the Picard number of divisors in Fano manifolds, Ann. Sci. Éc. Norm. Supér., 45, 3, pp. 363-403, (2012)
[6]  
Cho K., Miyaoka Y., Shepherd-Barron N.I., Mori S., Miyaoka Y., Characterizations of projective space and applications to complex symplectic manifolds, Higher Dimensional Birational Geometry (Kyoto, 1997). Advanced Studies in Pure Mathematics, vol. 35, pp. 1-88, (2002)
[7]  
Cho K., Sato E., Smooth projective varieties dominated by smooth quadric hypersurfaces in any characteristic, Math. Z., 217, 4, pp. 553-565, (1994)
[8]  
Colliot-Thelene J.-L., Sansuc J.-J., The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), Algebraic Groups and Homogeneous Spaces, pp. 113-186, (2007)
[9]  
Fujita K., The Mukai conjecture for log Fano manifolds, Cent. Eur. J. Math., 12, 1, pp. 14-27, (2014)
[10]  
Horing A., Novelli C., Mori contractions of maximal length, Publ. Res. Inst. Math. Sci., 49, 1, pp. 215-228, (2013)