Cm,sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^k_{m,s}$$\end{document} as a k-uniform hypergraph and some its properties

被引:0
作者
G. H. Shirdel
A. Mortezaee
E. Golpar-raboky
机构
[1] University of Qom,Department of Mathematics
关键词
Hypergraph; Laplacian; Signless Laplacian; Tensor; H-eigenvalue;
D O I
10.1007/s13226-021-00050-7
中图分类号
学科分类号
摘要
Hypergraphs are important data structures that are used abundantly in modern science for analyzing complex and big data. One of the most interesting and highly application in hypergraph theory is the spectral theory that is taken into consideration in recent years. In this paper we introduce Cm,sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^k_{m,s}$$\end{document} as an extension of the cycle in graph theory which is not a power hypergraph and nor a cored hypergraph. We show that it is regular and odd-bipartite if m is even. Also a necessary and sufficient condition for odd-bipartition whenever m is odd is presented. Finally we give some spectral properties of it.
引用
收藏
页码:297 / 303
页数:6
相关论文
共 25 条
[1]  
Chang KC(2008)Perron-Frobenius theorem for nonnegative tensors Commun. Math. Sci. 6 507-520
[2]  
Pearson K(2007)Signless Laplacians of finite graphs Linear Algebra Appl. 423 155-171
[3]  
Zhang T(2013)On determinants and eigenvalue theory of tensors J. Symbolic Comput. 50 508-531
[4]  
Cvetković D(2014)The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph Discrete Appl. Math. 169 140-151
[5]  
Rowlinson P(2013)Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues Linear Algebra Appl. 439 2980-2998
[6]  
Simić SK(2015)The largest Laplacian and signless Laplacian eigenvalues of a uniform hypergraph Linear Algebra Appl. 469 1-27
[7]  
Hu S(2005)Eigenvalues of a real supersymmetric tensor J. Symbolic Computation. 40 1302-1324
[8]  
Huang ZH(2014)H COMMUN. MATH. SCI. 12 1045-1064
[9]  
Ling C(2014)-eigenvalues of Laplacian and signless Laplacian Tensors Linear Algebra and its Applications 443 215-227
[10]  
Qi L(2002)Regular Uniform Hypergraphs, s-Cycles, s-Paths and Their largest Laplacian H-Eigenvalues Australas. J. Combin. 26 33-39