Magnetic resonance spectroscopy of brain tumours

被引:6
作者
Harting I. [1 ,2 ]
Jost G. [1 ]
Hacke N. [1 ]
Hartmann M. [1 ]
机构
[1] Abteilung Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg
[2] Abteilung Neuroradiologie, Universitätsklinikum Heidelberg, 69120 Heidelberg
关键词
Brain neoplasms; Glioma; Lymphoma; MR spectroscopy;
D O I
10.1007/s00115-004-1797-1
中图分类号
学科分类号
摘要
Magnetic resonance spectroscopy facilitates non-invasive determination of metabolic changes in vivo. The main metabolites are the neuronal marker N-acetylaspartate (NAA), cholines reflecting membrane turnover, creatine, lactate, and mobile lipids. Primary brain tumours exhibit reduced NAA and increased choline resonances compared to normal brain, and these abnormalities increase with higher malignancy. Increasing choline resonances on follow-up studies correlate with tumour progression, whereas the reduction of initially increased choline resonances indicates a transition from viable tumour to necrotic tissue. Metastases as non-neuroectodermal tumours lack NAA, but demonstrate elevated choline, lactate and lipid resonances. Lymphomas are characterised by massively increased lipid resonances with markedly elevated choline. Prominent alanine resonances are often observed in meningioma. Cystic/necrotic lesions demonstrate elevated lactate regardless of their aetiology. The characteristic finding of prominent resonances from acetate, succinate, and alanine, of leucine, isoleucine and valine in untreated bacterial abscesses allows the differentiation of bacterial abscesses from cystic/necrotic brain tumours. © Springer Medizin Verlag 2005.
引用
收藏
页码:403 / 417
页数:14
相关论文
共 48 条
[1]  
Barbarella G., Ricci R., Pirini G., Et al., In vivo single voxel 1H MRS of glial brain tumors: Correlation with tissue histology and in vitro MRS, Int J Oncol, 12, pp. 461-468, (1998)
[2]  
Bhakoo K.K., Pearce D., In vitro expression of N-acetyl aspartate by oligodendrocytes: Implications for proton magnetic resonance spectroscopy signal in vivo, J Neurochem, 74, pp. 254-262, (2000)
[3]  
Brand A., Richter-Landsberg C., Leibfritz D., Multinuclear NMR studies on the energy metabolism of glial and neuronal cells, Dev Neurosci, 15, pp. 289-298, (1993)
[4]  
Bulakbashi N., Kocaoglu M., Ors F., Et al., Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors, Am J Neuroradiol, 23, pp. 225-233, (2003)
[5]  
Burtscher I.M., Holtas S., In vivo proton MR spectroscopy of untreated and treated brain abscesses, Am J Neuroradiol, 20, pp. 1049-1053, (1999)
[6]  
Castillo M., Kwock L., Proton MR spectroscopy of common brain tumors, Neuroimaging Clin N Am, 8, pp. 733-752, (1998)
[7]  
Danielsen E.R., Michaelis T., Ross B.D., Three methods of calibration in quantitative proton MR spectroscopy, J Magn Reson B, 106, pp. 117-191, (1995)
[8]  
Davie C.A., Hawkins C.P., Barker G.J., Et al., Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions, Brain, 117, pp. 49-58, (1994)
[9]  
Duijn J.H., Matson G.B., Maudsley A.A., Et al., Human brain infarction: Proton MR spectroscopy, Radiology, 183, pp. 711-718, (1992)
[10]  
Earnest F.I., Kelly P.J., Scheithauer B.W., Et al., Cerebral astrocytomas: Histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy, Radiology, 166, pp. 823-827, (1988)