Discrepancy of LS-sequences of partitions and points

被引:0
作者
Ingrid Carbone
机构
[1] Università della Calabria,
来源
Annali di Matematica Pura ed Applicata | 2012年 / 191卷
关键词
Uniform distribution; Discrepancy; 11K06; 11K38; 11K45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a countable family of uniformly distributed sequences of partitions, called LS-sequences of partitions, and we give a precise estimate of their discrepancy. Among these sequences, we identify a countable class having low discrepancy (which means of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\frac{1}{N}}}$$\end{document}). We describe an explicit algorithm that associates to each of these sequences a uniformly distributed sequence of points (we call LS-sequences of points). The main result of this paper says that the discrepancy of the sequences of points associated by our algorithm to the LS-sequences of partitions is of order αN log N, if αN is the discrepancy of the corresponding sequence of partitions. We obtain therefore, in particular, a countable family of low-discrepancy sequences of points.
引用
收藏
页码:819 / 844
页数:25
相关论文
共 14 条
  • [1] Chersi F.(1992)λ-equidistributed sequences of partitions and a theorem of the de Bruijn-Post type Ann. Mat. Pura Appl. 162 23-32
  • [2] Volčič A.(2007)Kakutani splitting procedure in higher dimension Rend. Ist. Matem. Univ. Trieste 39 119-126
  • [3] Carbone I.(2009)Uniform distribution on fractals Unif. Distrib. Theory 4 47-58
  • [4] Volčič A.(1977)Sur la répartition des suites de Kakutani C. R. Acad. Sci. Paris Sér. A-B 285 A403-A406
  • [5] Infusino M.(1978)Sur la répartition des suites de Kakutani C. R. Acad. Sci. Paris Sr. A-B 286 A459-A461
  • [6] Volčič A.(2004)Weak convergence results for the Kakutani interval splitting procedure Ann. Probab. 32 380-423
  • [7] Lootgieter J.C.(2011)A generalization of Kakutani’s splitting procedure Ann Mat. Pura Appl. (4) 190 45-54
  • [8] Lootgieter J.C.(1925)Gleichmässig dichte Zahlenfolgen Mat. Fiz. Lapok 32 32-40
  • [9] Pyke R.(1978)A proof of Kakutani’s conjecture on random subdivision of longest intervals Ann. Probab. 6 133-137
  • [10] van Zwet W.R.(1972)Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas Bull. Soc. Roy. Sci. Liège 41 179-182