Invariant measures for the periodic derivative nonlinear Schrödinger equation

被引:0
|
作者
Giuseppe Genovese
Renato Lucà
Daniele Valeri
机构
[1] Universität Zürich,Institut für Mathematik
[2] Universität Basel Spiegelgasse 1,Department Mathematik und Informatik
[3] University of Glasgow,School of Mathematics and Statistics
来源
Mathematische Annalen | 2019年 / 374卷
关键词
35Q30; 35BXX; 37K05; 37L50; 35Q55; 37K10; 37K30; 17B69; 17B80;
D O I
暂无
中图分类号
学科分类号
摘要
We construct invariant measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation (DNLS) for small data in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} and we show these measures to be absolutely continuous with respect to the Gaussian measure. The key ingredient of the proof is the analysis of the gauge group of transformations associated to DNLS. As an intermediate step for our main result, we prove quasi-invariance with respect to the gauge maps of the Gaussian measure on L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} with covariance (I+(-Δ)k)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb {I}+(-\Delta )^k)^{-1}$$\end{document} for any k⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\;\geqslant \;2$$\end{document}.
引用
收藏
页码:1075 / 1138
页数:63
相关论文
共 50 条
  • [1] Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation
    Giuseppe Genovese
    Renato Lucà
    Daniele Valeri
    Selecta Mathematica, 2016, 22 : 1663 - 1702
  • [2] Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation
    Bradley Isom
    Dionyssios Mantzavinos
    Atanas Stefanov
    Mathematische Annalen, 2024, 388 : 2289 - 2329
  • [3] Periodic wave solutions of generalized derivative nonlinear Schrödinger equation
    Department of Computer Science, East China Normal University, Shanghai 200062, China
    不详
    Chin. Phys. Lett., 2008, 11 (3844-3847):
  • [4] Invariant measures for the periodic derivative nonlinear Schrodinger equation
    Genovese, Giuseppe
    Luca, Renato
    Valeri, Daniele
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1075 - 1138
  • [5] On a nonlinear Schrödinger equation with periodic potential
    Thomas Bartsch
    Yanheng Ding
    Mathematische Annalen, 1999, 313 : 15 - 37
  • [6] Invariant measures for a stochastic nonlinear and damped 2D Schrödinger equation
    Brzezniak, Zdzislaw
    Ferrario, Benedetta
    Zanella, Margherita
    NONLINEARITY, 2024, 37 (01)
  • [7] Space Periodic Solutions and Rogue Wave Solution of the Derivative Nonlinear Schr?dinger Equation
    ZHOU Guoquan
    LI Xujun
    WuhanUniversityJournalofNaturalSciences, 2017, 22 (05) : 373 - 379
  • [8] Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation
    Yu Deng
    Andrea R. Nahmod
    Haitian Yue
    Communications in Mathematical Physics, 2021, 384 : 1061 - 1107
  • [9] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [10] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967