Vicious Walkers, Friendly Walkers, and Young Tableaux. III. Between Two Walls

被引:0
作者
Christian Krattenthaler
Anthony J. Guttmann
Xavier G. Viennot
机构
[1] Universität Wien,Institut für Mathematik
[2] Université Claude Bernard Lyon-I,Institut Gerard Desargues
[3] Bâtiment Braconnier,LaBRI
[4] Université,undefined
来源
Journal of Statistical Physics | 2003年 / 110卷
关键词
Vicious walkers; friendly walkers; symmetric functions; affine Weyl groups;
D O I
暂无
中图分类号
学科分类号
摘要
We derive exact and asymptotic results for the number of star and watermelon configurations of vicious walkers confined to lie between two impenetrable walls, as well as corresponding results for the analogous problem of ∞-friendly walkers. Our proofs make use of results from symmetric function theory and the theory of basic hypergeometric series.
引用
收藏
页码:1069 / 1086
页数:17
相关论文
共 34 条
  • [1] Guttmann A. J.(1998)Vicious walkers and Young tableaux I: without walls J. Phys. A: Math. Gen. 31 8123-8135
  • [2] Owczarek A. L.(2000)Vicious walkers, friendly walkers and Young tableaux: II With a wall J. Phys. A: Math. Gen. 33 8835-8866
  • [3] Viennot X. G.(2002)Lattice paths: vicious walkers and friendly walkers J. Statist. Plann. Inference 101 107-131
  • [4] Krattenthaler C.(1988)Chiral Potts models, friendly walkers and directed percolation problem J. Phys. Soc. Japan 67 1655-1666
  • [5] Guttmann A. J.(1984)Walks, walls, wetting and melting J. Stat. Phys. 34 667-729
  • [6] Viennot X. G.(2002)A Hexagon model for 3D Lorentzian quantum cosmology Phys. Rev. D 66 084016-476
  • [7] Guttmann A. J.(2000)Shape fluctuations and random matrices Comm. Math. Phys. 209 437-360
  • [8] Vöge M.(2000)Statistical self-similarity of one-dimensional growth processes Physica A 279 342-5
  • [9] Tsuchiya T.(2000)Universal distributions for growth processes in 1+1 dimensions and random matrices Phys. Rev. Lett. 84 4882-1410
  • [10] Katori M.(2000)Random vicious walks and random matrices Comm. Pure Appl. Math. 53 1385-174