Atomic decompositions of Triebel-Lizorkin spaces with local weights and applications

被引:0
作者
Liguang Liu
Dachun Yang
机构
[1] Renmin University of China,Department of Mathematics, School of Information
[2] Beijing Normal University,School of Mathematical Sciences
[3] Laboratory of Mathematics and Complex Systems,undefined
[4] Ministry of Education,undefined
来源
Chinese Annals of Mathematics, Series B | 2014年 / 35卷
关键词
Local weight; Triebel-Lizorkin space; Atom; Lusin-Area function; Riesz transform; 46E35; 47B06; 42B20; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors characterize the inhomogeneous Triebel-Lizorkin spaces Fp,qs,w(ℝn with local weight w by using the Lusin-area functions for the full ranges of the indices, and then establish their atomic decompositions for s ∈ ℝ, p ∈ (0, 1] and q ∈ [p,∞). The novelty is that the weight w here satisfies the classical Muckenhoupt condition only on balls with their radii in (0, 1]. Finite atomic decompositions for smooth functions in Fp,qs,w(ℝn are also obtained, which further implies that a (sub)linear operator that maps smooth atoms of Fp,qs,w(ℝn uniformly into a bounded set of a (quasi-)Banach space is extended to a bounded operator on the whole Fp,qs,w(ℝn. As an application, the boundedness of the local Riesz operator on the space Fp,qs,w(ℝn is obtained.
引用
收藏
页码:237 / 260
页数:23
相关论文
共 42 条
[1]  
Bui H(1981)Weighted Hardy spaces Math. Nachr. 103 45-62
[2]  
Cao W(2010)Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces Acta Math. Sin. (Engl. Ser.) 26 2071-2084
[3]  
Chen J(2008)Hypersingular parameterized Marcinkiewicz integrals with variable kernels on Sobolev and Hardy-Sobolev spaces Appl. Math. J. Chinese Univ. Ser. B 23 420-430
[4]  
Fan D(1985)Decomposition of Besov spaces Indiana Univ. Math. J. 34 777-799
[5]  
Chen J(1990)A discrete transform and decompositions of distribution spaces J. Funct. Anal. 93 34-170
[6]  
Yu X(1979)A local version of real Hardy spaces Duke Math. 46 27-42
[7]  
Zhang Y(1995)A new atomic decomposition for the Triebel-Lizorkin spaces Contemp. Math. 189 235-249
[8]  
Wang H(2008)Atomic decompositions of function spaces with muckenhoupt weights, and some relation to fractal analysis Math. Nachr. 281 1476-1494
[9]  
Frazier M(2008)Entropy and approximation numbers of embeddings of function spaces with muckenhoupt weights, I Rev. Mat. Complut. 21 135-177
[10]  
Jawerth B(2010)Spectral theory of some degenerate elliptic operators with local singularities J. Math. Anal. Appl. 371 282-299