On a Class of Analytic Functions Defined by a Fractional Operator

被引:0
作者
Eszter Szatmari
机构
[1] Babeş-Bolyai University,
来源
Mediterranean Journal of Mathematics | 2018年 / 15卷
关键词
Analytic functions; fractional operator; Sǎlǎgean operator; Ruscheweyh derivative operator; fractional differintegral operator; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the author studies the fractional operator Dλν,n:A→A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}_\lambda ^{\nu , n}:\mathcal {A}\rightarrow \mathcal {A}$$\end{document}, for -∞<λ<2,ν>-1,n∈N0={0,1,2,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\infty<\lambda <2, \nu >-1, n\in \mathbb {N}_0=\{0,1,2,\ldots \}$$\end{document}, introduced in a recent work. A class of analytic functions defined by this operator is introduced. Inclusion relations, convolution property, extreme points of the class and other results are given. Corollaries based on the results are also given.
引用
收藏
相关论文
共 11 条
  • [1] Al-Oboudi FM(2004)On univalent functions defined by a generalized Sǎlǎgean operator Int. J. Math. Math. Sci. 27 1429-1436
  • [2] Crişan O(2011)Differential subordinations obtained by using Al-Oboudi and Ruscheweyh operators Stud. Univ. Babeş Bolyai Math. 56 45-51
  • [3] Fejér L(1925)Über die positivität von summen, die nach trigonometrischen oder Legendreschen funktionen fortschreiten I Acta Szeged 2 75-86
  • [4] Hallenbeck DJ(1974)Convex hulls and extreme points of some families of univalent functions Trans. Am. Math. Soc. 192 285-292
  • [5] Owa S(1978)On the distortion theorems I Kyungpook Math. J. 18 53-59
  • [6] Owa S(1987)Univalent and starlike generalized hypergeometric functions Can. J. Math. 39 1057-1077
  • [7] Srivastava HM(1975)New criteria for univalent functions Proc. Am. Math. Soc 49 109-115
  • [8] Ruscheweyh St(2016)Some Geometric properties of analytic functions involving a new fractional operator Mediterr. J. Math. 13 4591-4605
  • [9] Sharma P(undefined)undefined undefined undefined undefined-undefined
  • [10] Raina RK(undefined)undefined undefined undefined undefined-undefined