Dynamical spin chains in 4D N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs

被引:0
作者
Elli Pomoni
Randle Rabe
Konstantinos Zoubos
机构
[1] DESY Theory Group,Department of Physics
[2] University of Pretoria,undefined
[3] National Institute for Theoretical and Computational Sciences (NITheCS),undefined
关键词
AdS-CFT Correspondence; Lattice Integrable Models; Quantum Groups; Supersymmetric Gauge Theory;
D O I
10.1007/JHEP08(2021)127
中图分类号
学科分类号
摘要
This is the first in a series of papers devoted to the study of spin chains capturing the spectral problem of 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs in the planar limit. At one loop and in the quantum plane limit, we discover a quasi-Hopf symmetry algebra, defined by the R-matrix read off from the superpotential. This implies that when orbifolding the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 symmetry algebra down to the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 one and then marginaly deforming, the broken generators are not lost, but get upgraded to quantum generators. Importantly, we demonstrate that these chains are dynamical, in the sense that their Hamiltonian depends on a parameter which is dynamically determined along the chain. At one loop we map the holomorphic SU(3) scalar sector to a dynamical 15-vertex model, which corresponds to an RSOS model, whose adjacency graph can be read off from the gauge theory quiver/brane tiling. One scalar SU(2) sub-sector is described by an alternating nearest-neighbour Hamiltonian, while another choice of SU(2) sub-sector leads to a dynamical dilute Temperley-Lieb model. These sectors have a common vacuum state, around which the magnon dispersion relations are naturally uniformised by elliptic functions. Concretely, for the ℤ2 quiver theory we study these dynamical chains by solving the one- and two-magnon problems with the coordinate Bethe ansatz approach. We confirm our analytic results by numerical comparison with the explicit diagonalisation of the Hamiltonian for short closed chains.
引用
收藏
相关论文
共 239 条
[1]  
Beisert N(2012) = 4 Lett. Math. Phys. 99 3-undefined
[2]  
Arkani-Hamed N(2011) = 4 JHEP 01 041-undefined
[3]  
Bourjaily JL(2012) = 4 JHEP 07 174-undefined
[4]  
Cachazo F(2020) = 2 Phys. Rev. Lett. 124 161602-undefined
[5]  
Caron-Huot S(2018) ℤ Phys. Rev. Lett. 121 231602-undefined
[6]  
Trnka J(2012) = 2 JHEP 06 107-undefined
[7]  
Caron-Huot S(2012) = 2 JHEP 04 053-undefined
[8]  
He S(2012) = 2 JHEP 07 003-undefined
[9]  
Del Duca V(2013)4 JHEP 08 015-undefined
[10]  
Bargheer T(2015) = 2 Nucl. Phys. B 893 21-undefined