Lebesgue functions and Lebesgue constants in polynomial interpolation

被引:0
|
作者
Bayram Ali Ibrahimoglu
机构
[1] Yıldız Technical University,Department of Mathematical Engineering
来源
Journal of Inequalities and Applications | / 2016卷
关键词
polynomial interpolation; Lebesgue function; Lebesgue constant;
D O I
暂无
中图分类号
学科分类号
摘要
The Lebesgue constant is a valuable numerical instrument for linear interpolation because it provides a measure of how close the interpolant of a function is to the best polynomial approximant of the function. Moreover, if the interpolant is computed by using the Lagrange basis, then the Lebesgue constant also expresses the conditioning of the interpolation problem. In addition, many publications have been devoted to the search for optimal interpolation points in the sense that these points lead to a minimal Lebesgue constant for the interpolation problems on the interval [−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[-1, 1]$\end{document}.
引用
收藏
相关论文
共 50 条