The Maximum Tension Principle in General Relativity

被引:0
作者
G. W. Gibbons
机构
[1] Cambridge University,D.A.M.T.P.
来源
Foundations of Physics | 2002年 / 32卷
关键词
relativity; gravitational; tension; fundamental units;
D O I
暂无
中图分类号
学科分类号
摘要
I suggest that classical General Relativity in four spacetime dimensions incorporates a Principal of Maximal Tension and give arguments to show that the value of the maximal tension is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{{c^4 }}{{4G}}$$ \end{document}. The relation of this principle to other, possibly deeper, maximal principles is discussed, in particular the relation to the tension in string theory. In that case it leads to a purely classical relation between G and the classical string coupling constant α′ and the velocity of light c which does not involve Planck's constant.
引用
收藏
页码:1891 / 1901
页数:10
相关论文
共 17 条
  • [1] Comtet A.(1988)undefined Nucl. Phys. B 299 719-733
  • [2] Gibbons G. W.(1936)undefined Phys. Rev. 49 401-344
  • [3] Einstein A.(1964)undefined Nuovo Cimento 33 331-23
  • [4] Rosen N.(1974)undefined Comm. Math. Phys. 35 13-538
  • [5] Israel W.(1980)undefined Proc. Roy. Soc. Lond. A 372 535-164
  • [6] Khan K.(1980)undefined Phys. Rev. D 22 313-480
  • [7] Gibbons G. W.(1986)undefined Ann. Phys. (N.Y.) 172 304-207
  • [8] Gibbons G. W.(1986)undefined Europhys. Lett. 2 199-undefined
  • [9] Gibbons G. W.(1975)undefined Rev. Mod. Phys. 47 123-undefined
  • [10] Perry M. J.(1899)undefined S.-B Preiss. Akad. Wiss. 1 440-undefined