Smooth maps of a foliated manifold in a symplectic manifold

被引:0
|
作者
Mahuya Datta
Md Rabiul Islam
机构
[1] Indian Statistical Institute,Statistics and Mathematics Unit
[2] University of Calcutta,Department of Pure Mathematics, University College of Science
来源
Proceedings - Mathematical Sciences | 2009年 / 119卷
关键词
Foliations; foliated immersions; foliated symplectic forms;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a smooth manifold with a regular foliation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{F} $$\end{document} and a 2-form ω which induces closed forms on the leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{F} $$\end{document} in the leaf topology. A smooth map f: (M, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{F} $$\end{document}) → (N, σ) in a symplectic manifold (N, σ) is called a foliated symplectic immersion if f restricts to an immersion on each leaf of the foliation and further, the restriction of f*σ is the same as the restriction of ω on each leaf of the foliation.
引用
收藏
页码:333 / 343
页数:10
相关论文
共 50 条
  • [1] Smooth maps of a foliated manifold in a symplectic manifold
    Datta, Mahuya
    Islam, Md Rabiul
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (03): : 333 - 343
  • [2] ON THE ISOMETRIES OF FOLIATED MANIFOLD
    Sharipov, A. S.
    Narmanov, A. Ya.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 2 (01): : 127 - 133
  • [3] WEYL MANIFOLD: A QUANTIZED SYMPLECTIC MANIFOLD
    Yoshioka, Akira
    Kanazawa, Tomoyo
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 392 - 401
  • [4] Immersions in a symplectic manifold
    Datta, M
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (02): : 137 - 149
  • [5] Immersions in a symplectic manifold
    Mahuya Datta
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1998, 108 : 137 - 149
  • [6] Quantization of a symplectic manifold associated to a manifold with projective structure
    Biswas, Indranil
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [7] AN ANALOG OF THE HOLONOMY BUNDLE FOR A FOLIATED MANIFOLD
    BLUMENTHAL, RA
    HEBDA, JJ
    TOHOKU MATHEMATICAL JOURNAL, 1988, 40 (02) : 189 - 197
  • [8] The Weighted Mixed Curvature of a Foliated Manifold
    Rovenski, Vladimir
    FILOMAT, 2019, 33 (04) : 1097 - 1105
  • [9] ON SOME SUBMERSIONS FROM A SYMPLECTIC MANIFOLD ONTO A POISSON MANIFOLD
    COSTE, A
    SONDAZ, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (16): : 583 - 585
  • [10] THE L∞-ALGEBRA OF A SYMPLECTIC MANIFOLD
    Janssens, Bas
    Ryvkin, Leonid
    Vizman, Cornelia
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 314 (01) : 81 - 98