Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent

被引:0
作者
Maoding Zhen
Jinchun He
Haoyuan Xu
Meihua Yang
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
来源
Boundary Value Problems | / 2018卷
关键词
Fractional Laplacian; Critical exponent; Ground state solution; Higher energy solution; 35J50; 35B33; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following critical system with fractional Laplacian: {(−Δ)su+λ1u=μ1|u|2∗−2u+αγ2∗|u|α−2u|v|βin Ω,(−Δ)sv+λ2v=μ2|v|2∗−2v+βγ2∗|u|α|v|β−2vin Ω,u=v=0in RN∖Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textstyle\begin{cases} (-\Delta)^{s}u+\lambda_{1}u=\mu_{1}|u|^{2^{\ast}-2}u+\frac{\alpha \gamma}{2^{\ast}}|u|^{\alpha-2}u|v|^{\beta} & \text{in } \Omega, \\ (-\Delta)^{s}v+\lambda_{2}v= \mu_{2}|v|^{2^{\ast}-2}v+\frac{\beta \gamma}{2^{\ast}}|u|^{\alpha}|v|^{\beta-2}v & \text{in } \Omega, \\ u=v=0 & \text{in } \mathbb{R}^{N}\setminus\Omega, \end{cases} $$\end{document} where (−Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta)^{s}$\end{document} is the fractional Laplacian, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< s<1$\end{document}, μ1,μ2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu_{1},\mu_{2}>0$\end{document}, 2∗=2NN−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\ast}=\frac{2N}{N-2s}$\end{document} is a fractional critical Sobolev exponent, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N>2s$\end{document}, 1<α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha$\end{document}, β<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta<2$\end{document}, α+β=2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha+\beta=2^{\ast}$\end{document}, Ω is an open bounded set of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document} with Lipschitz boundary and λ1,λ2>−λ1,s(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1},\lambda_{2}>-\lambda_{1,s}(\Omega)$\end{document}, λ1,s(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1,s}(\Omega)$\end{document} is the first eigenvalue of the non-local operator (−Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta)^{s}$\end{document} with homogeneous Dirichlet boundary datum. By using the Nehari manifold, we prove the existence of a positive ground state solution of the system for all γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma>0$\end{document}. Via a perturbation argument and using the topological degree and a pseudo-gradient vector field, we show that this system has a positive higher energy solution. Then the asymptotic behaviors of the positive ground state solutions are analyzed when γ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma\rightarrow0$\end{document}.
引用
收藏
相关论文
共 70 条
  • [1] Alberti G.(1998)Phase transition with the line-tension effect Arch. Ration. Mech. Anal. 144 1-46
  • [2] Bouchitté G.(2011)Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math. 136 521-573
  • [3] Seppecher P.(2011)Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach Arch. Ration. Mech. Anal. 199 493-525
  • [4] Nezza E.D.(2007)Regularity of the obstacle problem for a fractional power of the Laplace operator Commun. Pure Appl. Math. 60 67-112
  • [5] Palatucci G.(2012)On some critical problems for the fractional Laplacian operator J. Differ. Equ. 252 6133-6162
  • [6] Valdinoci E.(2014)Perturbations of a critical fractional equation Pac. J. Math. 271 65-85
  • [7] Abdallah B.N.(2016)Concentration-compactness principle for nonlocal scalar field equations with critical growth J. Math. Anal. Appl. 449 1189-1228
  • [8] Mellet A.(2010)Variational problems with free boundaries for the fractional Laplacian J. Eur. Math. Soc. 12 1151-1179
  • [9] Puel M.(2014)Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31 23-53
  • [10] Silvestre L.(2014)Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent Commun. Pure Appl. Anal. 13 567-584