Temperature analysis of the Gaussian distribution modeling the barrier height inhomogeneity in the Tungsten/4H-SiC Schottky diode

被引:0
|
作者
S. Toumi
Z. Ouennoughi
R. Weiss
机构
[1] Department of Physics,Laboratoire Optoélectronique Et Composants
[2] University of Boumerdes,Department of Physics, Faculty of Science
[3] University Erlangen,undefined
来源
Applied Physics A | 2021年 / 127卷
关键词
Metal–Semiconductor interface inhomogeneity; W/4H-SiC; -effect; Barrier’s height parameters ; , ; , ; , ; , ; ); Vertical optimization method;
D O I
暂无
中图分类号
学科分类号
摘要
The temperature dependence of the electrical properties of the Schottky barrier contact W/4H-SiC is studied in term of the Werner’s model assuming a Gaussian distribution of the barrier height to model the inhomogeneity of the Schottky interface. The Gaussian distribution is characterized by the parameters ϕ¯B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\phi }_{B}$$\end{document} as a mean barrier height, ρ2, ρ3 as coefficients quantifying the barrier deformation and σs as a standard deviation. The effect of the series resistance Rs and its relation with the standard deviation σs is also reported. A vertical optimization process is used to extract simultaneously all the parameters cited above as function of temperature from the forward current–voltage (I-V) characteristics at temperatures ranging from 303 to 448 K. The temperature dependence of the characterized parameters of the W/4H-SiC Schottky structure enables us to quantify the inhomogeneity state of the Schottky barrier height prevailing at the MS interface in terms of those extracted parameters.
引用
收藏
相关论文
共 50 条
  • [11] The role of deep level traps in barrier height of 4H-SiC Schottky diode
    Zaremba, G.
    Adamus, Z.
    Jung, W.
    Kaminska, E.
    Borysiewicz, M. A.
    Korwin-Mikke, K.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2012, 177 (15): : 1323 - 1326
  • [12] Optimized Annealing Temperature of Ti/4H-SiC Schottky Barrier Diode
    Yun, Seung Bok
    Kim, Jeong Han
    Kang, Ye Hwan
    Lee, Jung Hoon
    Kim, Ki-Hyun
    Kim, Sung-Su
    Jung, Eun Sik
    Kang, In-Ho
    Shin, Hoon Kyu
    Yang, Chang Heon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (05) : 3406 - 3408
  • [13] Barrier inhomogeneities of tungsten Schottky diodes on 4H-SiC
    Hamida, A. Ferhat
    Ouennoughi, Z.
    Sellai, A.
    Weiss, R.
    Ryssel, H.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2008, 23 (04)
  • [14] A 3 kV Schottky barrier diode in 4H-SiC
    Wahab, Q
    Kimoto, T
    Ellison, A
    Hallin, C
    Tuominen, M
    Yakimova, R
    Henry, A
    Bergman, JP
    Janzen, E
    APPLIED PHYSICS LETTERS, 1998, 72 (04) : 445 - 447
  • [15] 3 kV Schottky barrier diode in 4H-SiC
    Wahab, Q.
    Kimoto, T.
    Ellison, A.
    Hallin, C.
    Tuominen, M.
    Yakimova, R.
    Henry, A.
    Bergman, J.P.
    Janzen, E.
    Applied Physics Letters, 1998, 72 (04):
  • [16] Reverse characteristics of a 4H-SiC Schottky barrier diode
    Hatakeyama, T
    Shinohe, T
    SILICON CARBIDE AND RELATED MATERIALS 2001, PTS 1 AND 2, PROCEEDINGS, 2002, 389-3 : 1169 - 1172
  • [17] Ni, Ti/4H-SiC Schottky barrier diode
    Wang, Hao
    Bai, Song
    Chen, Gang
    Li, Zheyang
    Liu, Liuting
    Chen, Xuelan
    Shao, Kai
    Guti Dianzixue Yanjiu Yu Jinzhan/Research and Progress of Solid State Electronics, 2007, 27 (04): : 464 - 467
  • [18] Measure and analysis of 4H-SiC Schottky barrier height with Mo contacts
    Zhang, Teng
    Raynaud, Christophe
    Planson, Dominique
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2019, 85 (01):
  • [19] Modeling of 4H-SiC multi-floating-junction Schottky barrier diode
    Pu Hong-Bin
    Cao Lin
    Chen Zhi-Ming
    Ren Jie
    Nan Ya-Gong
    CHINESE PHYSICS B, 2010, 19 (10)
  • [20] Modeling of 4H-SiC multi-floating-junction Schottky barrier diode
    蒲红斌
    曹琳
    陈治明
    仁杰
    南雅公
    Chinese Physics B, 2010, 19 (10) : 412 - 417