Improved Approximation Algorithms for the Facility Location Problems with Linear/Submodular Penalties

被引:0
作者
Yu Li
Donglei Du
Naihua Xiu
Dachuan Xu
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] University of New Brunswick,Faculty of Business Administration
[3] Beijing University of Technology,Department of Applied Mathematics
来源
Algorithmica | 2015年 / 73卷
关键词
Approximation algorithm; Facility location problem ; LP rounding; Submodular function;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the facility location problem with submodular penalties (FLPSP) and the facility location problem with linear penalties (FLPLP), two extensions of the classical facility location problem (FLP). First, we introduce a general algorithmic framework for a class of covering problems with submodular penalties, extending the recent result of Geunes et al. (Math Program 130:85–106, 2011) with linear penalties. This framework leverages existing approximation results for the original covering problems to obtain corresponding results for their counterparts with submodular penalties. Specifically, any LP-based α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-approximation for the original covering problem can be leveraged to obtain an 1-e-1/α-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1-e^{-1/\alpha }\right) ^{-1}$$\end{document}-approximation algorithm for the counterpart with submodular penalties. Consequently, any LP-based approximation algorithm for the classical FLP (as a covering problem) can yield, via this framework, an approximation algorithm for the counterpart with submodular penalties. Second, by exploiting some special properties of submodular/linear penalty function, we present an LP rounding algorithm which has the currently best 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-approximation ratio over the previously best 2.375\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.375$$\end{document} by Li et al. (Theoret Comput Sci 476:109–117, 2013) for the FLPSP and another LP-rounding algorithm which has the currently best 1.5148\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5148$$\end{document}-approximation ratio over the previously best 1.853\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.853$$\end{document} by Xu and Xu (J Comb Optim 17:424–436, 2008) for the FLPLP, respectively.
引用
收藏
页码:460 / 482
页数:22
相关论文
共 50 条
  • [21] Khuller S(undefined)Max: stochastic transportation-inventory network design problem undefined undefined undefined-undefined
  • [22] Jain K(undefined)An LP rounding algorithm for approximating uncapacitated facility location problem with penalties undefined undefined undefined-undefined
  • [23] Vazirani VV(undefined)An improved approximation algorithm for uncapacitated facility location problem with penalties undefined undefined undefined-undefined
  • [24] Jain K(undefined)A multiexchange local search algorithm for the capacitated facility location problem undefined undefined undefined-undefined
  • [25] Mahdian M(undefined)Approximating the two-level facility location problem via a quasi-greedy approach undefined undefined undefined-undefined
  • [26] Markakis E(undefined)A new approximation algorithm for the undefined undefined undefined-undefined
  • [27] Saberi A(undefined)-facility location problem undefined undefined undefined-undefined
  • [28] Vazirani VV(undefined)undefined undefined undefined undefined-undefined
  • [29] Li Y(undefined)undefined undefined undefined undefined-undefined
  • [30] Du D(undefined)undefined undefined undefined undefined-undefined