The g-extra diagnosability of the balanced hypercube under the PMC and MM* model

被引:0
作者
Xinyang Wang
Lijuan Huang
Qiao Sun
Naqin Zhou
Yuehong Chen
Weiwei Lin
Keqin Li
机构
[1] Beijing Forestry University,School of Information Science and Technology
[2] Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration,Cyberspace Institute of Advanced Technology
[3] Guangzhou University,School of Mathematics and Systems Science
[4] Guangdong Polytechnic Normal University,School of Computer Science and Engineering
[5] South China University of Technology,Department of Computer Science
[6] State University of New York,undefined
来源
The Journal of Supercomputing | 2022年 / 78卷
关键词
g-extra diagnosability; Balanced hypercube; Interconnection networks; PMC model; MM* model;
D O I
暂无
中图分类号
学科分类号
摘要
Fault diagnosis plays an important role in the measuring of the fault tolerance of an interconnection network, which is of great value in the design and maintenance of large-scale multiprocessor systems. As a classical variant of the hypercube, the Balanced Hypercube, denoted by BHn(n≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge$$\end{document} 1), has drawn a lot of research attention, and its g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-extra diagnosability has been studied to improve the network diagnostic ability. However, the current literatures on g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-extra diagnosability of BHn under the PMC model only cover the cases of g<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g < 6$$\end{document}, and what’s more, seldom involve its g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-extra diagnosability under the MM* model, which is a great limitation on the research of BHn diagnosability. In this paper, the upper and lower bounds of the g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-extra diagnosability of the balanced hypercube are proved, respectively, based on the g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-extra connectivity by the contradiction method, and finally, the g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-extra diagnosability of BHn for 2≤g≤2n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \le g \le 2n - 1$$\end{document} under the PMC and MM* model is obtained, i.e., 2n-2⌈g-12⌉+n+g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\left[ {\left( {n - 2} \right)\lceil\frac{g - 1}{2}\rceil + n} \right] + g$$\end{document}. In addition, as a special case, the g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-extra diagnosability of the balanced hypercube for g=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g = 2n$$\end{document} is proved to be 22n-1-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{2n - 1} - 1$$\end{document} under the PMC and MM* model. In the end, simulation experiments are conducted to verify the effectiveness of our proposed theories. The conclusion of this paper has certain theory and application value for the research of BHn fault diagnosis.
引用
收藏
页码:6995 / 7015
页数:20
相关论文
共 52 条
  • [1] Sengupta A(1992)On self-diagnosable multiprocessor systems: diagnosis by the comparison approach IEEE Trans Comput 41 1386-1396
  • [2] Dahbura AT(2005)Conditional diagnosability measures for large multiprocessor systems IEEE Trans Comput 54 165-175
  • [3] Lai PL(2012)The Appl Math Comput 218 10406-10412
  • [4] Tan JJM(2015)-good-neighbor conditional diagnosability of hypercube under PMC model Int J Comput Math 93 482-497
  • [5] Chang CP(2018)The Appl Math Comput 336 60-66
  • [6] Hsu LH(2017)-extra conditional diagnosability and sequential t/k diagnosability of hypercubes Theoret Comput Sci 704 62-73
  • [7] Peng SL(2020)The Int J Found Comput Sci 31 445-459
  • [8] Lin CK(2019)-extra connectivity and diagnosability of crossed cubes IEEE Access 99 1-1
  • [9] Tan JJM(2020)On Parallel Process Lett 30 2040006-3898
  • [10] Hsu LH(2021) -extra conditional diagnosability of hypercubes and folded hypercubes J Supercomput 77 3885-2672