Optimal parameter of the SOR-like iteration method for solving absolute value equations

被引:0
作者
Cairong Chen
Bo Huang
Dongmei Yu
Deren Han
机构
[1] Fujian Normal University,School of Mathematics and Statistics & Key Laboratory of Analytical Mathematics and Applications (Ministry of Education) & Fujian Provincial Key Laboratory of Statistics and Artificial Intelligence & Fujian Key Laboratory of Analyt
[2] Liaoning Technical University,Institute for Optimization and Decision Analytics
[3] Beihang University,LMIB
来源
Numerical Algorithms | 2024年 / 96卷
关键词
Absolute value equations; SOR-like iteration method; Optimal iteration parameter; Convergence condition; 65F10; 65H10; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
The SOR-like iteration method for solving the system of absolute value equations of finding a vector x such that Ax-|x|-b=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax - |x| - b = 0$$\end{document} with ν=‖A-1‖2<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu = \Vert A^{-1}\Vert _2 < 1$$\end{document} is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke and Ma (Appl. Math. Comput., 311:195–202, 2017) are revisited and a new proof is given, which exhibits some insights in determining the convergent region and the optimal iteration parameter. Along this line, the optimal parameter which minimizes ‖Tν(ω)‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_\nu (\omega )\Vert _2$$\end{document} with Tν(ω)=|1-ω|ω2ν|1-ω||1-ω|+ω2ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\nu (\omega ) = \left( \begin{array}{cc} |1-\omega | &{} \omega ^2\nu \\ |1-\omega | &{} |1-\omega | +\omega ^2\nu \end{array}\right) \end{aligned}$$\end{document}and the approximate optimal parameter which minimizes an upper bound of ‖Tν(ω)‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_\nu (\omega )\Vert _2$$\end{document} are explored. The optimal and approximate optimal parameters are iteration-independent, and the bigger value of ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is, the smaller convergent region of the iteration parameter ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is. Numerical results are presented to demonstrate that the SOR-like iteration method with the optimal parameter is superior to that with the approximate optimal parameter proposed by Guo et al. (Appl. Math. Lett., 97:107–113, 2019).
引用
收藏
页码:799 / 826
页数:27
相关论文
共 78 条
  • [1] Abdallah L(2018)Solving absolute value equation using complementarity and smoothing functions J. Comput. Appl. Math. 327 196-207
  • [2] Haddou M(2016)On the global convergence of the inexact semi-smooth Newton method for absolute value equation Comput. Optim. Appl. 65 93-108
  • [3] Migot T(2011)A globally and quadratically convergent method for absolute value equations Comput. Optim. Appl. 48 45-58
  • [4] Bello Cruz JY(2021)An inverse-free dynamical system for solving the absolute value equations Appl. Numer. Math. 168 170-181
  • [5] Ferreira OP(2023)Exact and inexact Douglas-Rachford splitting methods for solving large-scale sparse absolute value equations IMA J. Numer. Anal. 43 1036-1060
  • [6] Prudente LF(2017)A generalization of the Gauss-Seidel iteration method for solving absolute value equations Appl. Math. Comput. 293 156-167
  • [7] Caccetta L(2019)On the SOR-like iteration method for solving absolute value equations Appl. Math. Lett. 97 107-113
  • [8] Qu B(2018)Bounds for the solutions of absolute value equations Comput. Optim. Appl. 69 243-266
  • [9] Zhou G-L(2023)Properties of the solution set of absolute value equations and the related matrix classes SIAM J. Matrix Anal. Appl. 44 175-195
  • [10] Chen C-R(2010)A note on absolute value equations Optim. Lett. 4 417-424