Resource augmentation for uniprocessor and multiprocessor partitioned scheduling of sporadic real-time tasks

被引:0
|
作者
Jian-Jia Chen
Samarjit Chakraborty
机构
[1] Karlsruhe Institute of Technology (KIT),Department of Informatics
[2] Technical University of Munich (TUM),Institute for Real
来源
Real-Time Systems | 2013年 / 49卷
关键词
Approximate demand bound function; DBF; Resource augmentation; Approximation; PTAS; Schedulability analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Although the earliest-deadline-first (EDF) policy is known to be optimal for preemptive real-time task scheduling in uniprocessor systems, the schedulability analysis problem has recently been shown to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{co}\mathcal{NP}$\end{document}-hard. Therefore, approximation algorithms, and in particular, approximations based on resource augmentation have attracted a lot of attention for both uniprocessor and multiprocessor systems. Resource augmentation based approximations assume a certain speedup of the processor(s). Using the notion of approximate demand bound function (dbf), in this paper we show that for uniprocessor systems the resource augmentation factor is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{2e-1}{e} \approx1.6322$\end{document}, where e is the Euler number. We approximate the dbf using a linear approximation when the analysis interval length of interest is larger than the relative deadline of the task. For identical multiprocessor systems with M processors and constrained-deadline task sets, we show that the deadline-monotonic partitioning (that has been proposed by Baruah and Fisher) with the approximate dbf leads to an approximation factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3e-1}{e}-\frac{1}{M} \approx 2.6322-\frac{1}{M}$\end{document} with respect to resource augmentation. We also show that the corresponding factor is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3-\frac{1}{M}$\end{document} for arbitrary-deadline task sets. The best known results so far were \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3-\frac{1}{M}$\end{document} for constrained-deadline tasks and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4-\frac {2}{M}$\end{document} for arbitrary-deadline ones. Our tighter analysis exploits the structure of the approximate dbf directly and uses the processor utilization violations (which were ignored in all previous analysis) for analyzing resource augmentation factors. We also provide concrete input instances to show that the lower bound on the resource augmentation factor for uniprocessor systems—using the above approximate dbf—is 1.5, and the corresponding bound is 2.5 for identical multiprocessor systems with an arbitrary order of fitting and a large number of processors. Further, we also provide a polynomial-time approximation scheme (PTAS) to derive near-optimal solutions under the assumption that the ratio of the maximum relative deadline to the minimum relative deadline of tasks is a constant, which is a more relaxed assumption compared to the assumptions required for deriving such a PTAS in the past.
引用
收藏
页码:475 / 516
页数:41
相关论文
共 50 条
  • [31] Multiprocessor real-time scheduling
    Anderson, James H.
    Devi, UmaMaheswari
    JOURNAL OF SYSTEMS ARCHITECTURE, 2011, 57 (05) : 485 - 486
  • [32] The partitioned multiprocessor scheduling of sporadic task systems*
    Baruah, S
    Fisher, N
    RTSS 2005: 26TH IEEE INTERNATIONAL REAL-TIME SYSTEMS SYMPOSIUM, PROCEEDINGS, 2005, : 321 - 329
  • [33] POSTER ABSTRACT: Online Semi-Partitioned Multiprocessor Scheduling of Soft Real-Time Periodic Tasks for QoS Optimization
    Sanati, Behnaz
    Cheng, Albert M. K.
    2016 IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS), 2016,
  • [34] A New Approach for Scheduling of Parallelizable Tasks in Real-Time Multiprocessor Systems
    G. Manimaran
    C. Siva Ram Murthy
    Krithi Ramamritham
    Real-Time Systems, 1998, 15 : 39 - 60
  • [35] On-line scheduling of scalable real-time tasks on multiprocessor systems
    Lee, WY
    Hong, SJ
    Kim, J
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (12) : 1315 - 1324
  • [36] Multiprocessor platform for partitioned real-time systems
    Perez Tijero, Hector
    Aldea Rivas, Mario
    Medina Ortega, Daniel
    SOFTWARE-PRACTICE & EXPERIENCE, 2017, 47 (01): : 61 - 78
  • [37] Energy aware scheduling of aperiodic real-time tasks on multiprocessor systems
    Anne, Naveen
    Muthukumar, Venkatesan
    Journal of Computing Science and Engineering, 2013, 7 (01) : 30 - 43
  • [38] Slack-based multiprocessor scheduling of aperiodic real-time tasks
    Lars Lundberg
    Real-Time Systems, 2011, 47 : 618 - 638
  • [39] Non-preemptive Multiprocessor Scheduling for Periodic Real-Time Tasks
    Mayank, Jaishree
    Mondal, Arijit
    2017 7TH INTERNATIONAL SYMPOSIUM ON EMBEDDED COMPUTING AND SYSTEM DESIGN (ISED), 2017,
  • [40] Scheduling of Real-Time Tasks With Multiple Critical Sections in Multiprocessor Systems
    Chen, Jian-Jia
    Shi, Junjie
    von der Bruggen, Georg
    Ueter, Niklas
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (01) : 146 - 160