On some inequalities for Doob decompositions in Banach function spaces

被引:0
作者
Masato Kikuchi
机构
[1] University of Toyama,Department of Mathematics
来源
Mathematische Zeitschrift | 2010年 / 265卷
关键词
Martingale; Doob decomposition; Banach function space; Interpolation space; Rearrangement-invariant function space; 60G42; 46E30; 46B70;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi : \mathbb{R} \to [0, \infty)}$$\end{document} be a Young function and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f = (f_n)_n\in\mathbb{Z}_{+}}$$\end{document} be a martingale such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(f_n) \in L_1}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \in \mathbb{Z}_{+}}$$\end{document} . Then the process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(f) = (\Phi(f_n))_n\in\mathbb{Z}_{+}}$$\end{document} can be uniquely decomposed as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(f_n)=g_n+h_n}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g=(g_n)_n\in\mathbb{Z}_{+}}$$\end{document} is a martingale and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h=(h_n)_n\in\mathbb{Z}_{+}}$$\end{document} is a predictable nondecreasing process such that h0 = 0 almost surely. The main results characterize those Banach function spaces X such that the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|{h_{\infty}}\|_{X} \leq C \|{\Phi(Mf)} \|_X}$$\end{document} is valid, and those X such that the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|{h_{\infty}}\|_{X} \leq C \|{\Phi(Sf)} \|_X}$$\end{document} is valid, where Mf and Sf denote the maximal function and the square function of f, respectively.
引用
收藏
页码:865 / 887
页数:22
相关论文
共 14 条
[1]  
Astashkin S.(2004)Interpolation between Proc. Am. Math. Soc. 132 2929-2938
[2]  
Maligranda L.(1969) and Can. J. Math. 21 1245-1254
[3]  
Boyd D.W.(1973), 1 < Ann. Prob. 1 19-42
[4]  
Burkholder D.L.(2002) < ∞ Trans. Am. Math. Soc. 354 91-105
[5]  
Burkholder D.L.(1970)Indices of function spaces and their relationship to interpolation Acta Math. 124 249-304
[6]  
Burkholder D.L.(1974)Distribution function inequalities for martingales Can. J. Math. 26 1321-1340
[7]  
Gundy R.F.(1976)The best constant in the Davis inequality for the expectation of the martingale square function Ark. Mat. 14 213-236
[8]  
Chong K.M.(2003)Extrapolation and interpolation of quasi-linear operators on martingales Illinois J. Math. 47 867-882
[9]  
Cwikel M.(2004)Some extensions of a theorem of Hardy, Littlewood and Pólya and their applications Proc. Edinb. Math. Soc. 47 633-657
[10]  
Kikuchi M.(2006)Monotonicity properties of interpolation spaces Publ. Mat. 50 167-189