Bifurcations in Kuramoto–Sivashinsky equations

被引:0
作者
S. A. Kashchenko
机构
[1] Demidov Yaroslavl State University,
[2] National Research Nuclear University “MIFI,undefined
[3] ”,undefined
来源
Theoretical and Mathematical Physics | 2017年 / 192卷
关键词
bifurcation; stability; normal form; singular perturbation; dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the local dynamics of the classical Kuramoto–Sivashinsky equation and its generalizations and study the problem of the existence and asymptotic behavior of periodic solutions and tori. The most interesting results are obtained in the so-called infinite-dimensional critical cases. Considering these cases, we construct special nonlinear partial differential equations that play the role of normal forms and whose nonlocal dynamics thus determine the behavior of solutions of the original boundary value problem.
引用
收藏
页码:958 / 973
页数:15
相关论文
共 50 条
[41]   Bifurcations and Patterns in the Kuramoto Model with Inertia [J].
Hayato Chiba ;
Georgi S. Medvedev ;
Matthew S. Mizuhara .
Journal of Nonlinear Science, 2023, 33
[42]   Optimal boundary control of a coupled system consisting of Kuramoto-Sivashinsky-Korteweg-de Vries and heat equations [J].
Sun, Bing ;
Wu, Mi-Xia .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2017, 39 (12) :1829-1840
[43]   Irreducibility of Kuramoto-Sivashinsky equation driven by degenerate noise [J].
Gao, Peng .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
[44]   B-Class Solitary Waves and Their Persistence Under Kuramoto-Sivashinsky Perturbation [J].
Qian, Zhang .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (02) :587-606
[45]   NULL CONTROLLABILITY AND STABILIZATION OF THE LINEAR KURAMOTO-SIVASHINSKY EQUATION [J].
Cerpa, Eduardo .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (01) :91-102
[46]   Coherent structures theory for the generalized Kuramoto-Sivashinsky equation [J].
Tseluiko, D. ;
Saprykin, S. ;
Kalliadasis, S. .
THIRD INTERNATIONAL SYMPOSIUM ON BIFURCATIONS AND INSTABILITIES IN FLUID DYNAMICS, 2010, 216
[47]   ABOUT CLASSICAL SOLUTIONS FOR HIGH ORDER CONSERVED KURAMOTO-SIVASHINSKY TYPE EQUATION [J].
Coclite, Giuseppe Maria ;
Di Ruvo, Lorenzo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12) :4793-4820
[48]   Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation [J].
黄琼伟 ;
唐驾时 .
CommunicationsinTheoreticalPhysics, 2011, 55 (04) :685-687
[49]   On dusty gas model governed by the Kuramoto-Sivashinsky equation [J].
Doronin, Gleb G. ;
Larkin, Nikolai A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (01) :67-80
[50]   Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation [J].
Tchaho, C. T. Djeumen ;
Omanda, H. M. ;
Belobo, D. Belobo .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (09)