Bifurcations in Kuramoto–Sivashinsky equations

被引:0
作者
S. A. Kashchenko
机构
[1] Demidov Yaroslavl State University,
[2] National Research Nuclear University “MIFI,undefined
[3] ”,undefined
来源
Theoretical and Mathematical Physics | 2017年 / 192卷
关键词
bifurcation; stability; normal form; singular perturbation; dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the local dynamics of the classical Kuramoto–Sivashinsky equation and its generalizations and study the problem of the existence and asymptotic behavior of periodic solutions and tori. The most interesting results are obtained in the so-called infinite-dimensional critical cases. Considering these cases, we construct special nonlinear partial differential equations that play the role of normal forms and whose nonlocal dynamics thus determine the behavior of solutions of the original boundary value problem.
引用
收藏
页码:958 / 973
页数:15
相关论文
共 50 条
[31]   Endless Process of Bifurcations in Delay Differential Equations [J].
Kashchenko, Ilia .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (13)
[32]   On a nonlocal analog of the Kuramoto-Sivashinsky equation [J].
Granero-Belinchon, Rafael ;
Hunter, John K. .
NONLINEARITY, 2015, 28 (04) :1103-1133
[33]   Numerical study of soliton behavior of generalised Kuramoto-Sivashinsky type equations with Hermite splines [J].
Ayebire, Abdul-Majeed ;
Sahani, Saroj ;
Priyanka ;
Arora, Shelly .
AIMS MATHEMATICS, 2025, 10 (02) :2098-2130
[34]   Optimal bounds on the Kuramoto-Sivashinsky equation [J].
Otto, Felix .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) :2188-2245
[35]   Bifurcations in the Kuramoto model on graphs [J].
Chiba, Hayato ;
Medvedev, Georgi S. ;
Mizuhara, Matthew S. .
CHAOS, 2018, 28 (07)
[36]   Stability of cellular states of the Kuramoto-Sivashinsky equation [J].
Elgin, JN ;
Wu, XS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (06) :1621-1638
[37]   Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation [J].
Gotoda, Hiroshi ;
Pradas, Marc ;
Kalliadasis, Serafim .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05)
[38]   Optimal Boundary Control of Kuramoto-Sivashinsky Equation [J].
Dubljevic, Stevan .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :141-147
[39]   Fixed points of a destabilized Kuramoto-Sivashinsky equation [J].
Bartha, Ferenc A. ;
Tucker, Warwick .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :339-349