Analytic continuation of black hole entropy in Loop Quantum Gravity

被引:0
作者
Ben Achour Jibril
Amaury Mouchet
Karim Noui
机构
[1] Université Paris Diderot Paris 7,Laboratoire APC — Astroparticule et Cosmologie
[2] Université de Tours and Fédération Denis Poisson,Laboratoire de Mathématiques et Physique Théorique, CNRS (UMR 7350)
[3] FR CNRS 2964,undefined
[4] Université d’Orléans,undefined
[5] Université François Rabelais de Tours et CNRS,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
Models of Quantum Gravity; Black Holes;
D O I
暂无
中图分类号
学科分类号
摘要
We define the analytic continuation of the number of black hole microstates in Loop Quantum Gravity to complex values of the Barbero-Immirzi parameter γ. This construction deeply relies on the link between black holes and Chern-Simons theory. Technically, the key point consists in writing the number of microstates as an integral in the complex plane of a holomorphic function, and to make use of complex analysis techniques to perform the analytic continuation. Then, we study the thermodynamical properties of the corresponding system (the black hole is viewed as a gas of indistinguishable punctures) in the framework of the grand canonical ensemble where the energy is defined à la Frodden-Gosh-Perez from the point of view of an observer located close to the horizon. The semi-classical limit occurs at the Unruh temperature TU associated to this local observer. When γ = ±i, the entropy reproduces at the semi-classical limit the area law with quantum corrections. Furthermore, the quantum corrections are logarithmic provided that the chemical potential is fixed to the simple value μ = 2TU.
引用
收藏
相关论文
共 103 条
  • [1] Bekenstein JD(1973)Black holes and entropy Phys. Rev. D 7 2333-undefined
  • [2] Hawking SW(1975)Particle Creation by Black Holes Commun. Math. Phys. 43 199-undefined
  • [3] Bañados M(1992)Black hole in three-dimensional space-time Phys. Rev. Lett. 69 1849-undefined
  • [4] Teitelboim C(1993)Geometry of the (2 + 1) black hole Phys. Rev. D 48 1506-undefined
  • [5] Zanelli J(2005)Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole Class. Quant. Grav. 22 R85-undefined
  • [6] Bañados M(1996)Black hole entropy from loop quantum gravity Phys. Rev. Lett. 77 3288-undefined
  • [7] Henneaux M(2000)Quantum geometry of isolated horizons and black hole entropy Adv. Theor. Math. Phys. 4 1-undefined
  • [8] Teitelboim C(2004)Black hole entropy in loop quantum gravity Class. Quant. Grav. 21 5245-undefined
  • [9] Zanelli J(2010)Black hole entropy from an SU(2)-invariant formulation of Type I isolated horizons Phys. Rev. D 82 044050-undefined
  • [10] Carlip S(2011)The SU(2) Black Hole entropy revisited JHEP 05 016-undefined