Influence of cold rolling and annealing on the microstructure, mechanical properties, and electrical conductivity of an artificial microcomposite Cu-18% Nb alloy

被引:3
作者
Kuznetsov A.V. [1 ]
Stepanov N.D. [1 ]
Salishchev G.A. [1 ]
Pantsyrnyi V.I. [2 ]
Khlebova N.E. [2 ]
机构
[1] Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod
[2] Bochvar All-Russia Research Institute for Inorganic Materials, Moscow
关键词
Electrical conductivity - Filament widths - Microcomposite - Nano-crystalline structures - Pure copper - Retained strength - Strength property - Ultimate tensile strength;
D O I
10.1134/S0036029510110133
中图分类号
学科分类号
摘要
The influence of cold rolling and subsequent annealing at different temperatures on the micro-structure, strength properties, and electrical conductivity of a microcomposite Cu-18% Nb alloy fabricated by bundling and deformation is studied. A composite billet is rolled up to a total true strain of 3.5 and 5.1. After rolling, a nanocrystalline structure is obtained with an average filament width of 70-100 nm depending on the rolling strain. The ultimate tensile strength of the rolled foils is 867-934 MPa and the electrical conductivity is 19-40% of the pure copper conductivity. It is shown that annealing at 550°C results in an increase in the conductivity from 40 to 60% at a retained strength (microhardness) of the alloy. © 2010 Pleiades Publishing, Ltd.
引用
收藏
页码:1072 / 1079
页数:7
相关论文
共 18 条
[1]  
Heringhaus F., Raabe D., Recent Advances in the Manufacturing of Copper-Base Composites, J. Mater. Proc. Technol., 59, pp. 367-372, (1996)
[2]  
Spitzig V.A., Biner S.B., Comparison of Strengthening in Wire-Drawn or Rolled Cu-20% Nb with Dislocation Accumulation Model, J. Mater. Sci., 28, pp. 4623-4629, (1993)
[3]  
Leprince-Wang Y., Han K., Huang Y., Yu-Zhang K., Microstructure in Cu-Nb Microcomposites, Mater. Sci. Eng. A, 351, pp. 214-223, (2003)
[4]  
Han K., Embury J.D., Sims J.R., Campbell L.J., Schneider-Muntau H.-J., Pantsyrniy V.I., Shikov A., Nikulin A., Voribieva A., The Fabrication, Properties and Microstructure of Cu-Ag and Cu-Nb Composite Conductors, Mater. Sci. Eng. A, 267, pp. 99-114, (1999)
[5]  
Kozlenkova N.I., Pantsyrnyi V.I., Nikulin A.D., Shikov A.K., Potapenko I.I., Electrical Conductivity of High Strength Cu-Nb Microcomposites, IEEE Trans. Magn., 32, pp. 2921-2924, (1996)
[6]  
Dupouy F., Snoeck E., Casanove M.J., Roucau C., Peyrade J.P., Askenaze S., Microstructural Characterization of High Strength and High Conductivity Nanocomposite Wires, Scripta Materialia, 34, 7, pp. 1067-1073, (1996)
[7]  
Hong S.I., Hill M.A., Mechanical and Electrical Properties of Heavily Drawn Cu-Nb Microcomposite with Various Nb Content, J. Mater. Sci., 37, pp. 1237-1245, (2002)
[8]  
Dew-Hughes D.D., High Strength Conductor for Pulsed Magnets, Mater. Sci. Eng. A, 168, pp. 35-40, (1993)
[9]  
Putilov A.V., Shikov A.K., Pantsyrnyi V.I., Vorob'eva A.E., Drobyshev V.A., Creation of Ultrahigh-Strength Nanostructured Microcomposite Electrotechnical Cu-Nb Wires by Plastic Deformation, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall, 3, pp. 77-83, (2008)
[10]  
Pantsyrnyi V.I., Shikov A.K., Vorob'eva A.E., Silaev A.G., Sud'ev S.V., Belyakov N.A., Khlebova N.E., Et al., High-Strength and High Electrical Conductivity Conductors Based on Cu-Nb Microcomposite Material, Pribory, 22, 4, pp. 36-40, (2002)