Pixel attention convolutional network for image super-resolution

被引:0
|
作者
Xin Wang
Shufen Zhang
Yuanyuan Lin
Yanxia Lyu
Jiale Zhang
机构
[1] Northeastern University,School of Computer Science and Engineering
[2] Northeastern University at Qinhuangdao,School of Computer and Communication Engineering
来源
Neural Computing and Applications | 2023年 / 35卷
关键词
Single-image super-resolution; Pixel attention mechanism; Channel attention; Spatial attention; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Single-image super-resolution reconstruction technology is to reconstruct fuzzy low-resolution images into clearer high-resolution images. It is a research hotspot in the field of computer vision and image processing. In recent years, the attention mechanism has been successfully applied in image super-resolution reconstruction. However, the existing methods use the channel attention mechanism and the spatial attention mechanism separately, or simply superimpose them, which cannot effectively unify the adjustment effects of both, and the performance is limited. This paper proposes a method that can merge channel attention and spatial attention into pixel attention, which achieves more precise adjustment of feature map information. The pixel attention convolutional neural network method built on this basis can improve the quality of image texture detail reconstruction. We have been tested on five widely used standard datasets, the experimental results show that the method is superior to most current representative reconstruction methods, especially in terms of high-definition picture texture restoration.
引用
收藏
页码:8589 / 8599
页数:10
相关论文
共 50 条
  • [1] Pixel attention convolutional network for image super-resolution
    Wang, Xin
    Zhang, Shufen
    Lin, Yuanyuan
    Lyu, Yanxia
    Zhang, Jiale
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (11) : 8589 - 8599
  • [2] HRAN: Hybrid Residual Attention Network for Single Image Super-Resolution
    Muqeet, Abdul
    Bin Iqbal, Md Tauhid
    Bae, Sung-Ho
    IEEE ACCESS, 2019, 7 : 137020 - 137029
  • [3] A Novel Attention Enhanced Dense Network for Image Super-Resolution
    Niu, Zhong-Han
    Zhou, Yang-Hao
    Yang, Yu-Bin
    Fan, Jian-Cong
    MULTIMEDIA MODELING (MMM 2020), PT I, 2020, 11961 : 568 - 580
  • [4] A DEEP CONVOLUTIONAL NETWORK FOR MEDICAL IMAGE SUPER-RESOLUTION
    Gao, Yunxing
    Li, Hengjian
    Dong, Jiwen
    Feng, Guang
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5310 - 5315
  • [5] Stratified attention dense network for image super-resolution
    Zhiwei Liu
    Xiaofeng Mao
    Ji Huang
    Menghan Gan
    Yueyuan Zhang
    Signal, Image and Video Processing, 2022, 16 : 715 - 722
  • [6] Region Attention Network For Single Image Super-resolution
    Du, Xiaobiao
    Liu, Chongjin
    Yang, Xiaoling
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] A scalable attention network for lightweight image super-resolution
    Fang, Jinsheng
    Chen, Xinyu
    Zhao, Jianglong
    Zeng, Kun
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (08)
  • [8] Stratified attention dense network for image super-resolution
    Liu, Zhiwei
    Mao, Xiaofeng
    Huang, Ji
    Gan, Menghan
    Zhang, Yueyuan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (03) : 715 - 722
  • [9] Upsampling Attention Network for Single Image Super-resolution
    Zheng, Zhijie
    Jiao, Yuhang
    Fang, Guangyou
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 399 - 406
  • [10] Feature Fusion Attention Network for Image Super-resolution
    Zhou D.-W.
    Ma L.-Y.
    Tian J.-Y.
    Sun X.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2233 - 2241