Almost automorphy profile of solutions for difference equations of Volterra type

被引:18
作者
Agarwal R.P. [1 ]
Cuevas C. [2 ]
Dantas F. [2 ]
机构
[1] Department of Mathematics, Texas AandM University-Kingsville, Kingsville
[2] Departamento de Matemática, Universidade Federal de Pernambuco
关键词
Almost automorphic functions; Perturbation theory; Volterra difference equation;
D O I
10.1007/s12190-012-0615-3
中图分类号
学科分类号
摘要
This work deals with the almost automorphic profile of solutions of the nonlinear Volterra difference equation u(n+1) = λ∑j na(n-j)u(j) + f(n,u(n)), for λ in a distinguished subset of the complex plane, where a(n) is a complex summable sequence and the perturbation f is a non-Lipschitz nonlinearity. Many illustrating remarks and examples are considered. © 2012 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 52 条
[1]  
Agarwal R.P., Difference Equations and Inequalities, (1992)
[2]  
Agarwal R.P., De Andrade B., Cuevas C., Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Anal.
[3]  
Real World Appl., 11, 5, pp. 3532-3554, (2010)
[4]  
Agarwal R.P., Cuevas C., Frasson M., Semilinear functional difference equations with infinite delay, Math. Comput. Model., 55, 3-4, pp. 1083-1105, (2012)
[5]  
Allouche J.-P., Bacher R., Toeplitz sequences, paperfolding, towers of Hanoi and progression-free sequences of integers, Enseign. Math. (2), 38, 3-4, pp. 315-327, (1992)
[6]  
Araya D., Castro R., Lizama C., Almost automorphic solutions of difference equations, Adv. Differ. Equ., 2009, (2009)
[7]  
Arrieta J.M., Carvalho A.N., Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Am. Math. Soc., 352, 1, pp. 285-310, (1999)
[8]  
Bochner S., Uniform convergence of monotone sequences of functions, Proc. Natl. Acad. Sci. USA, 47, pp. 582-585, (1961)
[9]  
Bochner S., Von Neumann J., On compact solutions of operational-differential equations. i, Ann. Math. (2), 36, 1, pp. 255-291, (1935)
[10]  
Cardoso F., Cuevas C., Exponential dichotomy and boundedness for retarded functional difference equations, J. Differ. Equ. Appl., 15, 3, pp. 261-290, (2009)