Some regularity criteria for the 3D generalized Navier–Stokes equations

被引:0
作者
Jae-Myoung Kim
机构
[1] Andong National University,Department of Mathematics Education
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Generalized Navier–Stokes equation; Fractional dissipation; Regularity; 76D05; 35Q35; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We show some regularity criteria (Prodi–Serrin type regularity) to weak solutions of the 3D generalized Navier–Stokes equations in viewpoint of the velocity vector u or the vorticity vector ω:=∇×u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega :=\nabla \times u$$\end{document} in Lorentz space. Moreover, we briefly mention some results for coupled equations with Navier–Stokes equation (see Remark 1.5 and 1.8).
引用
收藏
相关论文
共 72 条
[61]  
Wan R(undefined)undefined undefined undefined undefined-undefined
[62]  
Zhou Y(undefined)undefined undefined undefined undefined-undefined
[63]  
Wan R(undefined)undefined undefined undefined undefined-undefined
[64]  
Zhou Y(undefined)undefined undefined undefined undefined-undefined
[65]  
Wu J(undefined)undefined undefined undefined undefined-undefined
[66]  
Wu J(undefined)undefined undefined undefined undefined-undefined
[67]  
Zhang Z(undefined)undefined undefined undefined undefined-undefined
[68]  
Wang W(undefined)undefined undefined undefined undefined-undefined
[69]  
Yong Z(undefined)undefined undefined undefined undefined-undefined
[70]  
Zhou Y(undefined)undefined undefined undefined undefined-undefined