Some regularity criteria for the 3D generalized Navier–Stokes equations

被引:0
作者
Jae-Myoung Kim
机构
[1] Andong National University,Department of Mathematics Education
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Generalized Navier–Stokes equation; Fractional dissipation; Regularity; 76D05; 35Q35; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We show some regularity criteria (Prodi–Serrin type regularity) to weak solutions of the 3D generalized Navier–Stokes equations in viewpoint of the velocity vector u or the vorticity vector ω:=∇×u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega :=\nabla \times u$$\end{document} in Lorentz space. Moreover, we briefly mention some results for coupled equations with Navier–Stokes equation (see Remark 1.5 and 1.8).
引用
收藏
相关论文
共 72 条
[1]  
Bosia S(2014)A weak- J. Math. Fluid Mech. 16 721-725
[2]  
Pata V(2007) Prodi–Serrin type regularity criterion for the Navier–Stokes equations Rev. Mat. Iberoam. 23 371-384
[3]  
Robinson JC(2017)On the regularity conditions for the Navier–Stokes and related equations Nonlinear Anal. 151 265-273
[4]  
Chae D(2004)On the geometric regularity conditions for the 3D Navier–Stokes equations Commun. Math. Phys. 249 511-528
[5]  
Chae D(2017)A maximum principle applied to quasi-geostrophic equations Commun. Math. Phys. 362 659-688
[6]  
Lee J(1994)Ill-posedness of Leray solutions for the hypodissipative Navier–Stokes equations SIAM Rev. 36 73-410
[7]  
Códorba A(2015)Geometric statistics in turbulence J. Math. Fluid Mech. 17 393-365
[8]  
Códorba D(2019)Effect of vorticity coherence on energy-enstrophy bounds for the 3D Navier–Stokes equations Commun. Partial Differ. Equ. 44 335-457
[9]  
Colombo M(2008)Infinitely many Leray–Hopf solutions for the fractional Navier–Stokes equations Differ. Integral Equ. 21 443-571
[10]  
De Lellis C(2011)On the regularity criteria for the generalized Navier–Stokes equations and Lagrangian averaged Euler equations J. Math. Fluid Mech. 13 557-1949